
2 8 I E E E S O F T W A R E P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 0 7 4 0 - 7 4 5 9 / 0 5 / $ 2 0 . 0 0 © 2 0 0 5 I E E E

At Landmark Graphics, we’ve worked with
various software practices and processes and
over the last several years have begun to better
comprehend some of the guidelines that define
“barely sufficient” for our software projects.
One thing has become quite apparent: what’s
barely sufficient for one project can be insuffi-
cient for another yet overly bureaucratic for an-
other. As we looked at our project history, we
found that two primary attributes influenced
the type of process we used: complexity and un-
certainty. To better quantify these attributes, we
devised a scoring model and plotted each pro-
ject’s results on a four-quadrant graph. Similar
to the Boston Consulting Group’s Boston Ma-
trix (see the related sidebar on page 32), we
used names to represent the four quadrants:

■ Dogs are simple projects with low uncer-
tainty.

■ Colts are simple projects with high uncer-
tainty.

■ Cows are complex projects with low un-
certainty.

■ Bulls are complex projects with high un-
certainty.

Using this matrix, we’ve developed an ap-
proach to help determine what process practices
are “barely sufficient” for any given project.
We start with a core set of common practices.
Then, depending on complexity and uncer-
tainty, we can recommend additional practices.
We found that most of our projects had already
taken on this emergent behavior naturally—al-
though in several cases they didn’t start out that
way. By identifying these project drivers, we can
provide earlier guidance to project teams so
that they can start with a process that’s close to
appropriate.

focus 1
Context-Adaptive Agility:
Managing Complexity and
Uncertainty

A
gile software development has become increasingly popular
among development teams looking to shed unnecessary process
overhead to maximize the velocity of business value delivery.
Alistair Cockburn talks about a “barely sufficient” process,1

and Jim Highsmith suggests something “a little bit less than just
enough.”2 However, understanding just what’s sufficient for any given
project is a challenge.

adapting agility

Todd Little, Landmark Graphics

Once you categorize
your projects as
dogs, colts, cows, or
bulls according to
their complexity
and uncertainty,
you can adapt your
process by adding
practices according
to each project’s
profile.

Company background
Landmark Graphics (www.lgc.com) is the

leading supplier of software and services for oil
and gas exploration and production. Our soft-
ware portfolio, which ranges from exploration
and drilling to data management and decision
analysis, includes more than 60 products con-
sisting of over 50 million lines of source code. We
release products regularly, with release cycles
varying between three and 18 months. Landmark
has about 200 software developers and an R&D
staff of about 400 geographically dispersed
through primary development centers in Hous-
ton, Austin, and Denver in the US; Calgary,
Canada; and Stavanger, Norway. More details on
Landmark and our development process history
are available in an earlier report on this work.3

Development process overview
We started by investigating Alistair Cock-

burn’s Crystal methods1 and Barry Boehm’s
risk-based approach4 to blending agile and plan-
driven software development. Although we
liked the Crystal framework of categorizing
projects by size and criticality, we felt there
were more project attributes that influence how
to best manage a project. We enumerated all
the critical attributes we’d experienced that
had influenced how our successful projects had
been run. Once we had this list of attributes,
we looked for commonality and found, as I
said earlier, two primary concerns: complexity
and uncertainty. Using these attributes, we gen-
erated a quick survey that project teams could
use to assess their projects.

At the time we were doing this assessment,
Boehm and Richard Turner hadn’t yet pub-
lished their work on balancing agility and dis-
cipline.5 In that work, they categorized proj-
ects on the basis of five attributes: size,
criticality, dynamism, personnel capacity, and
organizational culture. Our approach both ex-
tends and simplifies their ideas. We use more
attributes in our evaluation but then simplify
by grouping them into two categories—com-
plexity and uncertainty.

Complexity drivers
A project’s structure determines its com-

plexity. We developed a system (see Table 1) to
score project complexity on the basis of

■ team size,
■ mission criticality,
■ team location,
■ team maturity,
■ domain knowledge gaps, and
■ dependencies.

Team size
Cockburn’s Crystal methods use team size

to determine Crystal “color,” with darker col-
ors requiring additional practices and develop-
ment rigor. Similarly, we see team size as a ma-
jor contributor to project complexity.

Mission and safety criticality
Also as in the Crystal methods, our ap-

proach treats mission criticality or project im-
portance as a major influence on development

M a y / J u n e 2 0 0 5 I E E E S O F T W A R E 2 9

Table 1
Complexity attributes and their scores*

Complexity score

Attribute 1 3 5 7 10

Team size 1 5 15 40 100
Mission criticality Speculative Small user base Established market Mission-critical with large Safety-critical with

user base significant exposure
Team location Same room Same building Within driving distance Same time zone +/– 2 hrs. Multisite, worldwide
Team capacity Established New team of experts Mixed team of experts Team with limited experience New team of mostly

team of experts and novices and a few experts novices
Domain knowledge Developers know Developers know the Developers require some Developers have exposure Developers have no
gaps the domain as well domain fairly well domain assistance to the domain idea about the

as expert users domain
Dependencies None Limited, well insulated Moderate Significant Tight integration with

several projects

* Minimally complex = 1, highly complex = 10.

3 0 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

methodology. If the project puts lives or busi-
ness-critical functions at risk, we must treat it
differently than if the only cost of failure is the
project investment.

Team location
Having everyone in the same room enables

high-bandwidth communication among the
project team members. A widely distributed
team or one in which a significant portion of the
team is located several time zones apart can in-
crease project complexity. This can be a difficult
attribute to assess, because a team that has one
or a few dispersed members might not drasti-
cally increase its complexity. We’ve advised
teams to use their judgment on this assessment.

Team capacity
An established team of experts that have

been working together for years on product
line enhancements can almost anticipate what
other team members are likely to need and do.
This contrasts with a brand-new team of rela-
tive novices. In many ways, this attribute is
similar to the Cockburn Shu-Ha-Ri personnel
capacity that Boehm and Turner use.5

Domain knowledge gaps
Landmark’s products include leading-edge

technologies used by specialists in oil and gas
exploration and production. It’s critical that
the product team have full-time access to the
domain specialists to resolve ambiguities and
produce the desired product. We’ve found

that this is greatly simplified when the devel-
opers are domain specialists themselves and
much more complex when access to domain
knowledge is limited.

Dependencies
This attribute measures the degree to which

the project team depends on third parties or
on other projects within the company. In gen-
eral, the more dependencies there are, the
more complex the project will be. You can
give reduced weight to established third-party
dependencies if the team has a consistent track
record of working with a stable version.

Uncertainty drivers
A project’s uncertainty depends on market

conditions and project constraints. The primary
indicators of project uncertainty (see Table 2) are

■ market uncertainty,
■ technical uncertainty,
■ project duration, and
■ other projects’ dependencies on that proj-

ect, and scope flexibility.

Market uncertainty
If the market needs are well known, the proj-

ect probably won’t need much steering. Con-
versely, if they aren’t well understood, the abil-
ity to steer the project to the desired goal rather
than to the initially stated objective will be crit-
ical. This attribute resembles the requirements
change attribute that Boehm and Turner use.

Table 2
Uncertainty attributes and their scores*

Uncertainty score

Attribute 1 3 5 7 10

Market uncertainty Known deliverable, Minor changes in Initial guess of market Significant market New, unknown, and
possibly defined market target target likely to require uncertainty untested market
contractual obligation expected steering

Technical uncertainty Enhancements to We think we know We’re not quite sure if we Some incremental New technology,
existing architecture how to build it know how to build it research involved new architecture;

might be some
exploratory research

Project duration 1–4 weeks 6 months 12 months 18 months 24 months
Dependencies, Well-defined Several interfaces Scope has some Some published No published
scope flexibility contractual obligations or Scope isn’t very flexibility interfaces interfaces

infrastructure with flexible Scope is highly
published interfaces flexible

* Minimally complex = 1, highly complex = 10.

We’ve found that one primary amplifier of
market uncertainty relates to the number of
customers. A single customer or single cus-
tomer voice typically has less uncertainty than
when there are multiple customers with multi-
ple voices.

Technical uncertainty
Mature products using proven technology

don’t encounter much technical uncertainty,
although sometimes we’ve experienced uncer-
tainty with new domain technologies added to
an existing product. On the other hand, proj-
ect teams building new products often want to
use the latest technology, so these projects will
have a high degree of technical uncertainty.

Project duration
The longer the project takes from start to

product release, the more chance there is for
technical or market uncertainty to affect it.

Dependencies and scope flexibility
The degree to which other projects depend

on this project can limit the amount of steer-
ing that the other projects can tolerate. Con-
tinually modifying interfaces isn’t acceptable
when those changes affect other projects.

Quadrant assessment
The project’s overall complexity and uncer-

tainty score is calculated on the basis of the ag-
gregation of the individual complexity and un-
certainty attribute scores:

where i and j are the complexity and uncer-
tainty attributes, respectively, for a given proj-
ect, and xi and yj are the individual complex-
ity and uncertainty attribute scores from
Tables 1 and 2. In effect, the log x terms are
scaled information measures.6

The equation is equivalent to rescaling each
attribute between 1 and 2 and then computing
the product. We chose this approach because
it made sense and seemed to give good results
when we cross-plotted the complexity and un-
certainty values for our portfolio (see Figure
1). We found that the projects in a given quad-
rant were quite similar, as were the successful
approaches used for managing those projects.
Figure 2 summarizes each quadrant’s proper-

ties, and the following sections describe them.
Putting these ideas together, we borrowed from
the concepts of the Boston Consulting Group
(see “The Boston Matrix” sidebar) to create
our own Houston Matrix.

Dogs: Simple projects with low uncertainty
Dogs are typically mature products being

developed by small teams. With this type of
project, which isn’t particularly complex or
uncertain, the best thing to do is to let the de-
velopment team do its job to ship the product.
Some projects in this quadrant have some un-
certainty, but we can keep their duration short
to limit the uncertainty’s impact. Prototype or
skunk works (R&D) projects, or skunks, often
fit in this category. For both dogs and skunks,
additional process ceremony and documenta-
tion are unnecessary and inefficient, so we run
them using only the minimal core set of prac-
tices that we use for all projects in all quad-
rants. This approach is similar to Cockburn’s

Complexity

Uncertainty

x

y

i

j

=

=

∑

∑

2

2

10

10

log

log

M a y / J u n e 2 0 0 5 I E E E S O F T W A R E 3 1

Pr
oj

ec
t u

nc
er

ta
in

ty

0

2

4

6

8

10

12

0 5 10 15 20 25 30
Project complexity

Figure 1. Project
complexity versus
project uncertainty for
projects from three
divisions. The symbols
represent different
divisions in the
company.

0

2

4

6

8

10

12

Pr
oj

ec
t u

nc
er

ta
in

ty

0 5 10 15 20 25 30
Project complexity

Simple, young projects
Need agility
Tight teams

Skunks Complex, mature market
Need defined interfaces

Agility to handle
uncertainty
Process definition to
cope with complexity

Laissez faire

Dogs

Cows

BullsColts

Figure 2. Houston
Matrix quadrant
assessment.

Crystal Clear.7 Approximately 60 percent of
our projects fall into the dog quadrant.

Colts: Simple projects with high uncertainty
New products will usually have both market

and technical uncertainty. If we keep our teams
small, they can react quickly to adapt to those
uncertainties. The metaphor of the young colt
aptly describes these projects. Colt projects are
just getting started and have a lot of energy and
freedom. Most of our project teams that have
had success with Extreme Programming8 fit in
this quadrant. We’ve also found that short daily
stand-up meetings such as those advocated by
Scrum9 are effective in this quadrant. Approxi-
mately 20 percent of our projects are colts.

Cows: Complex projects with low uncertainty
The mature products and product suites

that continue to have large project teams are
usually the organization’s cash cows. In addi-
tion to the obvious connection, the cow is a
good metaphor for these projects: cows are
quite large but don’t move particularly fast.
Cow projects have less need for agile steering;
in fact, they might need disciplined change
control to reduce their impact when many
projects or customers depend on them. Pro-
jects in this quadrant might still be agile, but

they need defined and published interfaces to
the projects that depend on them. They also
require more direct project and program man-
agement, including looking at issues such as
cross-team communication and critical path.
Many of our cows are integration projects in-
volving a number of projects, typically dogs.
We’ve used a team of team leaders, something
quite similar to a “Scrum of Scrums,”9 to
manage many of these projects. Cows consti-
tute about 10 percent of our projects.

Bulls: Complex projects with high uncertainty
Projects that are highly complex and have

high uncertainty create problems on all fronts.
They need to be quite agile to steer through
the uncertainty, yet they require some process
ceremony to manage complexity.

The bull metaphor is quite appropriate.
Bull projects are large and can get out of con-
trol quickly if the team isn’t careful. They have
high visibility throughout the organization, as
they’re often about emerging products that
have strong investment. In our case, many
have been next-generation products that man-
agement intended to supplant existing cash
cows. Expectations are high, yet uncertainty
and complexity are equally high. Approxi-
mately 10 percent of our projects are bulls.

3 2 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

The Boston Consulting Group’s Boston
Matrix (see Figure A) is a common tool for
product portfolio management. Products are
plotted on the chart according to market
growth and market share.

Question marks, also known as problem
children, show potential to gain market but
have not yet established a strong market posi-
tion. The objective is to convert them into
Stars.

Stars have established a strong market
share and continue to show market growth.
Because they’re in growth mode, they still re-
quire significant investment to generate mar-
ket growth.

Cash cows are prior stars that have started to
lose market share. They don’t require much investment and as a
result are highly profitable.

Dogs, or pets, are established products that either haven’t

penetrated the market or are former cash cows that have lost
market share. These products should be killed, divested, or
made profitable by reducing expenses.

The Boston Matrix

Cows

Low

High

M
ar

ke
t g

ro
w

th
Low High

Market share

Dogs

???
Question marks

Problem children

Stars

Figure A. The Boston Consulting Group’s Boston Matrix. (figure
courtesy of the Boston Consulting Group)

Core process practices
The quadrant assessment is a key early work

product of our development process. First, we
incorporate into our overall process framework
the core practices that all projects must follow.
Then we determine, on the basis of the project
assessment, which other process activities we
should use. The core practices include

■ an aggregate product plan,
■ an A/B/C list,
■ a quality agreement,
■ continuous integration,
■ expert-user involvement, and
■ a project dashboard.

Aggregate product plan
The product manager produces this con-

cise statement of the project objectives. For
each release, it contains

■ the target date,
■ a one-sentence product vision,
■ a high-level list of priority features that are

committed (I’ll discuss this in a moment),
■ a short description of the strategic fit,
■ a list of the target markets that will be

pursued, and
■ the supported platforms.

A/B/C list
We categorize all the desired features into

three priority levels:

■ Priority A features must be completed to
ship the product.

■ Priority B features should be completed to
ship the product.

■ Priority C features might be completed be-
fore shipping the product if time allows.

The team estimates effort requirements and
works with the product manager’s estimate of
value to maximize return on investment. We
communicate only the Priority A features to
customers.

Because we contract to deliver all the A
items, we allow for uncertainty by planning
the schedule so that A features consume no
more than 50 percent of the overall planned
effort. As we complete Priority A items over
the course of the project, we use any remain-
ing schedule time to complete the Priority B or
C items. We often reprioritize during the proj-

ect, particularly at iterations, although we
usually don’t drop A items unless we’ve set
proper customer expectations. (Another arti-
cle describes this approach and how we use it
to maximize value delivery.)10

Quality agreement
The team works with the product man-

ager to reach agreement on quality targets
for the release. We’ve modified Rob Thom-
sett’s quality agreement approach11 to use
A/B/C prioritization. We feel that this gives
us consistency in our discussions and pro-
vides a bit more granularity than Thomsett’s
on-off approach.

Continuous integration
For all our projects, we use configuration

management and build at least nightly. A num-
ber of projects have started using a continuous-
build process. Most projects using continuous
builds started as colts, but some of these are
now bulls or cows and still find continuous
builds beneficial.

Expert user involvement
We’ve always found it critical to have ex-

pert users involved in development. Most of
our complex projects have a dedicated expert
user, usually a former customer. Nearly all our
testers are also expert users, as are many of the
developers.

Project dashboard
We developed a Web-based interface for re-

porting typical information about project sta-
tus. This portfolio dashboard is an excellent
way to view project health. Available informa-
tion includes the aggregate product plan, qual-
ity metrics, top active risks, and any revisions
to the release estimate, among other things.
Project managers record this information at
least weekly.

Context-adaptive process practices
We can add additional processes and prac-

tices to the core set on the basis of the project
attributes. The project quadrant provides guid-
ance for the types of processes and practices to
be added.

Dogs and skunks
As I previously mentioned, these projects are

generally sufficient with just the core practices.

M a y / J u n e 2 0 0 5 I E E E S O F T W A R E 3 3

It’s unwise for
an organization
to have more
bull projects

than bull
project

managers.

Colts
These high-uncertainty projects benefit

from three additional practices that help them
cope with uncertainty: short iterations, daily
stand-up meetings, and automated unit tests.

Cows
Although these projects don’t have much

uncertainty, they require additional processes
to deal with complexity. Such activities might
include more rigorous requirements manage-
ment (we use a requirements tool), functional
specifications for interface definitions, rela-
tively detailed project plans with critical-path
identification, and projects broken down into
subprojects and coordinated by a team of
leaders or a Scrum of Scrums.

Bulls
These projects are quite difficult to control:

they can be large and complex and require
steering to cope with uncertainty. To run suc-
cessfully, they require much of the same process
ceremony we use with cows and much of the
agile steering we do with colts. Iterations must
be more frequent than with cows but longer
than for colts, and communication channels for
these projects must be efficient. Most impor-
tant, they require the best and most seasoned
project managers, who can understand how to
work with agility and cut through complexity,
balancing the dichotomy. We expect that most
organizations have only a few project managers
with the requisite capacity to manage these
projects. As such, it’s unwise for an organiza-
tion to have more bull projects than bull proj-
ect managers. (See Marjorie Farmer’s experi-
ence report for more on the trials and
tribulations of managing a bull project.)12

Adjusting project constraints
Your teams might discover during the

quadrant assessment that their project is ei-
ther more complex or uncertain than they’d
thought. Sometimes, you can adjust a project
to reduce either complexity or uncertainty. In
particular, we’ve often found that decompos-
ing larger projects into subprojects has helped
reduce complexity.

Product life cycle
Products in our portfolio tend to have a life

cycle that moves through the various quad-
rants in Figure 3, again similar to the Boston
Matrix. Our most successful products follow
path 1 and start with low complexity and mod-
erate uncertainty as skunks, move to greater
uncertainty and complexity as colts, and then
become successful and turn into highly uncer-
tain and highly complex bulls. Over time the
complexity dies down and the product be-
comes a cow, eventually becoming a dog.

Many products follow path 2 and never
need to get particularly complex. There’s noth-
ing wrong with this, as a high percentage of
these products end up being profitable.

While we’ve had numerous attempts to start
products on path 3 directly in the bull quad-
rant, we haven’t yet seen success with this ap-
proach. Our only successful bull projects are
those that have first begun as colts or dogs.

A t Landmark we strive to deliver soft-
ware that maximizes business value.
We believe that agile development ap-

proaches are aligned with this philosophy and
have helped us improve our value delivery.

One particular metric that has shown im-
provement is our Estimation Quality Factor.13

EQF measures project estimation accuracy, es-
sentially the reciprocal of the estimation error.
An EQF of 5.0 represents an aggregate esti-
mation error of 20 percent. As Figure 4 shows,
our median EQF has improved steadily from
4.8 to 8.4 since we introduced this approach.
It was already respectable compared to the in-
dustry median EQF of 3.8 reported by Tom
DeMarco.13

Any organization will have a distribution
of project types, people, and opinions about
the right way to do things. No single software
development process is the best approach for
every project.

3 4 I E E E S O F T W A R E w w w. c o m p u t e r. o r g / s o f t w a r e

Low

High

Un
ce

rta
in

ty

Low High
Complexity

1

3

2

Skunks Dogs

Cows

BullsColts

Figure 3. The life cycle
of most products in
our portfolio moves
through many of the
quadrants in our
Houston Matrix.

The scoring model in our assessment tool
isn’t intended to be rigorous. However, it’s
proven useful to the project teams and to sen-
ior management. We don’t recommend using
it blindly; identifying your project’s complex-
ity and uncertainty attributes is intended to
stimulate thought, not eliminate it.

The assessment has also provided insight
into our project portfolio management. Our
overall portfolio of projects is distributed
across the four quadrants. Bull projects are dif-
ficult to run, and an organization with a high
percentage of bulls is taking on significant risk.
Most of our projects turn out to be in the dog
quadrant. Dogs can be loyal and rewarding.
Provide them reasonable care and feeding, and
they’ll provide good results in return.

Acknowledgments
The experience of the many Landmark develop-

ment teams provided fodder for this analysis. The
coauthors of the original experience report3 (Forrest
Greene, Tessy Phillips, Rex Pilger, and Robert Polder-
vaart) along with Karl Zachry helped to formulate the
development process and have provided valuable con-
tributions to this work.

References
1. A. Cockburn, Agile Software Development, Addison-

Wesley, 2001.
2. J. Highsmith, Adaptive Software Development: A Col-

laborative Approach to Managing Complex Systems,
Dorset House, 2000.

3. T. Little et al., “Adaptive Agility—Managing Complex-
ity and Uncertainty,” Proc. 2004 Agile Development
Conf., IEEE Press, 2004.

4. B. Boehm, “Get Ready for Agile Methods with Care,”
Computer, Jan. 2002, pp. 64–69.

5. B. Boehm and R. Turner, Balancing Agility and Disci-
pline: A Guide for the Perplexed, Addison-Wesley,
2003.

6. C.E. Shannon, “A Mathematical Theory of Communi-
cation,” Bell System Tech. J., vol. 27, July and Oct.
1948, pp. 379–423, 623–656.

7. A. Cockburn, Crystal Clear, Addison-Wesley, 2004.
8. K. Beck, Extreme Programming Explained: Embrace

Change, Addison-Wesley, 1999.
9. K. Schwaber and M. Beedle, Agile Software Develop-

ment with SCRUM, Prentice Hall, 2001.
10. T. Little, “Value Creation and Capture: A Model of the

Software Development Process,” IEEE Software, vol.
21, no. 3, 2004, pp. 48–53.

11. R. Thomsett, Radical Project Management, Prentice
Hall, 2002.

12. M. Farmer, “DecisionSpace Infrastructure: Agile Devel-
opment in a Large, Distributed Team,” Proc. 2004 Ag-
ile Development Conf., IEEE Press, 2004, pp. 95–99.

13. T. DeMarco, Controlling Software Projects, Prentice
Hall, 1982.

For more information on this or any other computing topic, please visit our
Digital Library at www.computer.org/publications/dlib.

M a y / J u n e 2 0 0 5 I E E E S O F T W A R E 3 5

Industry
median

2000 2001 2002 2003

10
9
8
7
6
5
4
3
2
1
0

Year of project start

Es
tim

at
io

n
Qu

al
ity

 F
ac

to
r

3.8
4.8

7.0
7.6

8.4

Figure 4. Improvement
in our company’s
median Estimation
Quality Factor.

About the Author

Todd Little is a senior development manager for Landmark Graphics. His current inter-
ests include generating business value through agile software development. He’s a member of
the AgileAlliance’s board of directors, the program director for the Agile 2005 Conference, a
member of the IEEE Computer Society and the Society of Petroleum Engineers, and a regis-
tered Professional Engineer in Texas. He received his MS in petroleum engineering from the
University of Houston. Contact him at Landmark Graphics, PO Box 42806, Houston, TX 77242;
tlittle@lgc.com.

We’d like to
hear from
you

SEND US EMAIL AT

@computer.org

