
Todd Little, David Chien, Rory Corbell, M. Ahsan Rahi, Craig Sinclair

Migrating Legacy Petroleum Engineering Applications to Open 
Systems Environments, or

What Happens When the Petroleum Engineering Software 
Development Staff Can’t Spell C or X?

SPE 027560

SPE
Society of Petroleum Engineers
References and illustrations at end of paper

Abstract

A case study is presented involving the software life 
cycle of a suite of commercial petroleum engineering 
reservoir simulation legacy applications. As with 
typical petroleum legacy applications, these were 
designed for DOS or VMS environments, written in 
FORTRAN, based on GKS for graphics and have 
hierarchical menu trees.

The hierarchical user interface was replaced with a 
C++ toolkit to provide a Motif look and feel, while 
keeping the remainder of the application in 
FORTRAN. As a result, the application developers 
that are well versed in FORTRAN can continue to 
augment the engineering portion of the application, 
allowing training in C, C++, X, and Motif to be spread 
out over time. 

This migration path has had several major benefits 
over a complete rewrite of the software. We have been 
able to produce an open systems application 
significantly faster than what would be required for a 
software rewrite. Additionally, this path has preserved 
compatibility with the legacy application and 
therefore provided enhanced reliability.

Introduction

Excellent legacy petroleum engineering applications 
have been developed over time. Although these 
applications provide good technical value, they often 
do not run on an open systems platform. When they 
do, these applications typically retain their original 
user interface giving them an antiquated look and 
rendering them awkward to use in today’s event 
driven environment. 

Typical petroleum legacy applications were designed 
for DOS or VMS operating systems, written in the 
FORTRAN programming language, used the GKS 
graphics API for drawing graphics into a single 
window, and based the menuing system on 
hierarchical menu trees. In contrast, an application 
designed for open systems typically runs on UNIX 
platforms, is written in C, C++ and/or FORTRAN, 
draws graphics to the X window system, and uses 
Motif for an event driven user interface.

Several options exist for migrating legacy applications 
to an open systems environment. A case study is 
presented involving the software life cycle of a suite 
of commercial petroleum engineering reservoir 
simulation legacy applications (DeskTop VIP) and the 
process by which these applications have been 



2 MIGRATING LEGACY APPLICATIONS TO OPEN SYSTEMS SPE 027560
migrated to an open systems architecture. The 
software development started in 1984 as an IBM-PC 
application, and subsequently over 30 man years of 
effort have been put into the software development 
process. The application has been distributed 
worldwide and has been installed on a wide variety of 
hardware platforms. 

Although the project started as a PC application, an 
initial design consideration was to be platform 
independent. A layered toolkit approach fostered a 
high degree of software reuse and new applications 
were quickly developed. This design allowed a 
stepwise migration of the applications to an open 
systems architecture. It was possible to replace the 
hierarchical user interface with a C++ toolkit layered 
on Motif to provide pulldown menus and a Motif look 
and feel, while keeping the remainder of the 
application in FORTRAN. The C++ toolkit was 
designed so that very little C++ or Motif knowledge 
would be required to modify the user interface. The 
application developers that were well versed in 
FORTRAN could continue to augment the 
engineering portion of the application, allowing 
training in C, C++, X, and Motif to be spread out over 
time.

This migration path has had several major benefits 
over a complete rewrite of the software. Since only the 
user interface has changed, the majority of the 
application remains unchanged maintaining the 
compatibility with previous versions and the integrity 
of the application. Consequently, it has been possible 
to produce an open systems application significantly 
faster than what would be required for a software 
rewrite while preserving compatibility and reliability.

Description of the Legacy Applications

In 1984 J.S. Nolen and Associates began a 
development project to provide a suite of graphical 
pre- and postprocessing software to be used with the 
VIP reservoir simulation software package. The two 
applications that were the initial focus of the 
development effort were oriented towards providing 
tools for the reservoir engineer to assist with the time 
consuming aspects of the reservoir simulation process 

and to provide graphical insight into the reservoir 
simulation. 

The graphical post processor, SIMOUT, allowed for 
viewing XY plots for well production along with map 
views of simulator grid block properties. With this 
visualization capability, the reservoir engineer could 
quickly analyze the results of a reservoir simulation 
study greatly expediting the simulation process. By 
using the visual tool, the engineer was also able to 
explore the simulation study to gain new insight into 
the physical behavior of the reservoir. 

Another time consuming part of the reservoir 
simulation process, and also the step most likely to 
induce error, is the generation of the reservoir 
simulation gridblock description. To provide an 
engineering tool for this facility, the pre-processing 
package GRIDGENR was developed. This application 
has been used effectively for many reservoir 
simulation studies and has been shown to have saved a 
great deal of effort.1,2

Consistent with the original plan, it became obvious 
that additional pre- and postprocessing applications 
would be beneficial for the reservoir engineer. 
Applications that have been subsequently developed 
include a graphical relative permeability curve editor, 
a PVT property editor, and a utility for entering 
general simulation setup parameters.

Initial Application Architecture

At the beginning of the development process, the 
advent and popularity of the IBM-PC dictated that 
MSDOS platforms would need to be supported. It was 
also realized that it would be very limiting and 
shortsighted to focus development strictly for the PC. 
In fact, it was clear from the outset that it would be 
desirable to provide the same tools on a VAX/VMS 
platform. This situation provided a bit of a dilemma 
since at the time there was no clear path that would 
provide portability between these two platforms. 

When the development was started, the staff had 
experience only with the FORTRAN programming 
language. One hope for portability was the Graphics 
Kernel System (GKS). GKS is an ANSI standard 
graphics drawing Application Program Interface 



SPE 027560 T. LITTLE, D. CHIEN, R. CORBELL, M. A. RAHI, C. SINCLAIR 3 
(API) with defined bindings for FORTRAN. However, 
at the time there was no GKS available for MSDOS. 
There were indications that GKS would eventually be 
available for the PC and thus development continued 
along that line. It was quickly realized that the full 
featured GKS environment used too much memory to 
allow the building of commercial reservoir 
engineering applications. The 640K memory limit 
meant that overhead needed to be eliminated 
whenever possible. After further application design, it 
was determined that the GKS model was acceptable, 
but that the retained segment capabilities offered by 
the full Level 2 GKS were unnecessary. As a result, a 
GKS-like toolkit was developed to provide the 
specific graphic functions required by the engineering 
applications. This toolkit was designed to be able to 
use a Level 0 GKS implementation, and also allowed 
for the development of Level 0 GKS device drivers as 
needed.

The experience with the graphical toolkit led to the 
development of low level toolkits to handle the 
machine dependent operations such as file handling 
and screen operations. These low level toolkits 
provided the basis from which to generate higher level 
toolkits such as a textual forms tool, a graphical menu 
tool, an XY plotting tool, a contouring and curve 
fitting tool, and a database access tool. This toolkit 
layering is shown in the Application Architecture 
Diagram in Figure 1. 

Previous Migration Paths

The layered toolkit approach improved application 
portability and encouraged software reuse. 
Application developers found that they could build 
their applications much more rapidly by utilizing the 
toolkit components. Consequently, all of the pre- and 
postprocessing applications were built upon the 
toolkits. This layering also provided a mechanism to 
insulate the application from nearly all machine 
dependencies. Since only the toolkits needed to be 
migrated, the effort required to port the applications 
from one operating system to another, or from one 
graphics device to another, was significantly reduced

The original software development effort was 

predominantly on MSDOS PCs, with the graphics 
development using the OMNIcomp graphics 
controller. This provided adequate graphics display, 
but hardcopy 

Application

Application
User
Interface

Database

Contouring
and
Curve
Fitting

XYPlot
Graphical
User
Interface

Textual
User
Interface

FileIO Graphics ScreenIO

IBM-PC

VT-100

Curses

X11

PC/GEM
GKS
DI-3000
TEK
HPGL
PostScript
CGM
X11

PC/DOS

Vax/VMS

UNIX

Figure 1

Architectural Diagram of Application Suite

output was only available via screen 
dump. To provide for scalable hardcopy and additional 
graphics displays, the required component of the 
GKS-like layer were developed utilizing the GEM 
software drivers. Once the GKS-like layer was 
developed, all the applications were able to have this 
new hardcopy capability. 

As interest in the applications grew, so did the need to 
support additional platforms. The other major 
platform at this time was VAX/VMS, and the 
introduction of the MicroVAX furthered its popularity. 
For these applications, the OMNIcomp graphics 
controller was also used on the MicroVAX, and 
hardcopy was provided by developing the graphics 
drivers for the HP plotters and for Tektronix printers, 
or by utilizing a full GKS implementation for both the 
graphics display and the hardcopy output. 



4 MIGRATING LEGACY APPLICATIONS TO OPEN SYSTEMS SPE 027560
The screen I/O interface provided another challenge 
for portability between MSDOS and VMS 
environments. To provide this facility, the screen I/O 
toolkit was built to support the VT100 and the 
applications were not altered. Similarly, file I/O 
operations which were optimized for the PC were built 
using generic FORTRAN for the VAX.

During this phase of the software life cycle, the 
following platforms and graphical systems were 
supported.

Platforms: PC/MSDOS, VAX/VMS, Apollo/
Aegis, IBM-RT/UNIX, IBM/VM, 
Clipper/UNIX, HP3000/UNIX

Graphics: OMNI(PC,VAX), GEM(PC), 
GSS(PC), GKS(VAX), DI-3000 
(VAX,IBM/VM), Tek(VAX), 
CIT(VAX), VT340(VAX), Lexidata 
(VAX), Starbase(HP), GPR(Apollo), 
GPX(VAX), Calcomp (VAX,UNIX), 
Versatec(VAX,UNIX), HPGL, 
PostScript, CGM, X11(UNIX,VMS)

Open Systems Environment

The ability to migrate the toolkit has enabled each of 
the applications to be usable in an environment in 
which it was not initially expected to be used. In fact, 
simply by porting the underlying toolkit it was 
possible to allow the applications to operate in an open 
systems environment of UNIX and X11. 

The basic functionality of the applications in this 
environment was considered valuable to the 
engineers. However, it was clear that the graphical 
user interface was difficult to navigate and 
incompatible with the Motif interfaces to which users 
were becoming accustomed. The fundamental 
layering of the menuing toolkit did not allow a trivial 
port to a Motif user interface. It would have been 
possible to do a direct translation of the menu toolkit 
to Motif, but that would have resulted in the exact 
same menus but with Motif buttons. This cosmetic 
enhancement was considered to be of minimal value.

Alternatives Considered

Two basic alternatives were considered to reach the 
desired objective of a Motif user interface. One option 
was to completely rewrite the applications and design 
them to use Motif from the outset. Such a rewrite 
would be done using either the C or C++ 
programming languages, a much more natural fit for 
open systems environments and Motif than 
FORTRAN. The other approach involved rewriting 
just the user interface component of the applications, 
leaving most of the remainder of the applications 
untouched.

Before deciding which approach should be taken, it 
was necessary to inventory the resources available for 
the conversion and the level of experience. At the time 
(1992) the decision to migrate to Motif was made, 
there were 7 developers dedicated to the overall 
project. As can be seen in Table 1, of the 7 developers, 
all had working knowledge of FORTRAN, and 5 had 
extensive background with FORTRAN. Most of the 
developers had some exposure to the C language, yet 
few would have been considered proficient. Even 
fewer were proficient in C++ or Motif.

Table 1: 

Knowledge Some Good Proficient

FORTRAN 7 6 5

C 5 3 2

C++ 3 2 1

Xlib 3 3 1

Motif 2 2 1

What do you do when your engineering 
development staff cannot spell C or X?

Figure 2 depicts a set diagram of the collection of 
expertise with regard to the applications, C, C++, and 
Motif. Not surprisingly, those most proficient in C++ 
and Motif were the least proficient in FORTRAN and 
also the least familiar with the legacy applications. 
The converse was also true in that those most familiar 



SPE 027560 T. LITTLE, D. CHIEN, R. CORBELL, M. A. RAHI, C. SINCLAIR 5 
with the applications generally had very little 
background with C, C++, or Motif. As can be seen, 
the intersection of those that had expertise with the 
applications, C++, and Motif was very small subset of 
the overall collection of developers.

C

Application
Motif

C++

Expertise
(FORTRAN)

Figure 2

Migration Strategy

Given the limited Motif expertise available to migrate 
the applications to Motif, it was necessary either to 
train the application developers in C++ and Motif, or 
to provide them with tools which allowed them to 
develop the needed enhancements. Based on previous 
experience, it was estimated that it would take 6 
months for a C developer to become proficient in 
C++. The estimate was even longer for a FORTRAN 
programmer with limited exposure to C. A similar 
effort would be necessary to become proficient in 
Motif. 

At the time the migration strategy was being 
developed, the developers who were proficient in C++ 
and Motif were working on a 3D visualization 
component to the pre- and postprocessor. As this was 
an entirely new product, it was designed in an object 
oriented fashion for an open systems environment. 
The development included the creation of an object 
oriented user interface where the objects were 
comprised of Motif widgets. The interface toolkit is 
not simply a wrapper around Motif; it is a framework 
whose structure and functionality is designed from the 
application’s point of view. This “application-
oriented”3 approach hides the complexities of X and 

Motif and provides a much more natural fit to the 
application. For example, the toolkit allows the simple 
one step creation of a fully customized Motif main 
window. The application developer defines the 
interface using a declarative form while retaining the 
ability to dynamically alter components of the 
interface. This object interface greatly expedited the 
process of developing the user interface component of 
the 3D application by providing reusable objects. In 
addition, the object layering kept X11 and Motif 
related issues isolated. Thus a foundation was laid for 
an application framework upon which current and 
future developments could be based while still 
maintaining an insulation of the applications from 
changes in user interface technology. 

The success with this interface toolkit indicated that 
the same toolkit would be usable within our legacy 
applications. Since the object interface insulates the 
application developer from Motif, the learning curve 
for the user interface component could be greatly 
reduced. By focusing development on a reusable 
toolkit, it was possible to make optimal use of the 
limited C++ and Motif expertise available. 

Through the use of the toolkit, it was determined that 
it would be possible to keep a majority of application 
framework intact. This was particularly true in those 
instances where the application user interface was 
isolated from the application core. Interaction between 
the core and the user interface was through a small set 
of functions defined in the user interface objects. 
Therefore, the application developers familiar with the 
application core could continue to enhance the 
application using FORTRAN and not be required to be 
proficient in C++ or Motif.

Case 1: GRIDGENR

The first legacy application migrated in this manner 
was GRIDGENR, the reservoir simulation grid 
generator, editor, and property calculator. Over 20 
man years of development had been invested in this 
application and the underlying software tools resulting 
in over 100,000 lines of FORTRAN and C code. The 
application is highly interactive and graphical in 
nature. Interaction within the graphics area was 



6 MIGRATING LEGACY APPLICATIONS TO OPEN SYSTEMS SPE 027560
generally well liked by users; however, the application 
had grown to contain over 500 menu choices and 
navigation through the menus was considered a 
significant drawback. It was therefore an excellent 
candidate for restructuring using Motif menus. 

After a careful study of the original GRIDGENR 
code, the menu items and the corresponding action 
routines were identified and extracted. For the most 
part, the user interface component was already 
isolated from the application core or action routines. A 
revised menuing system appropriate for an open 
systems application was then designed.

Application

Database
Contouring
and
Curve
Fitting

XYPlot

FileIO Graphics C++ GUI Tool

PostScript

CGM

X11

Motif

Application User Interface

C++ Object

UNIX

Interface

Figure 3

GRIDGENR Restructured Architecture 

Core
FORTRAN
to C++ 
and and
C++ to
FORTRAN
Interface

The overall restructured application architecture is 
depicted in Figure 3. As can be seen by comparison 
with the existing architecture (Figure 1), the core of 
the application remains intact. The user interface 
component, however, is completely restructured and 

rewritten. The user interface now drives the 
application action routines, whereas previously the 
application drove the user interface. The application 
user interface utilizes the C++ user interface tool, and 
communicates to the action routines and vice-versa 
via a C++ to FORTRAN interface layer. 

The complexity of the menu system forced a further 
enrichment of the toolkit features. Thus the toolkit 
evolved and matured as needed, side by side with the 
application. As a side effect, through continuous but 
limited exposure to the Motif/C++ toolkit, the 
application developers progressed on a comfortable 
learning curve, advancing to a point where they 
directly began making enhancements to the toolkit as 
needed. 

Two developers were involved is this process, one 
developer familiar with the toolkit but not the 
application, and one developer with good application 
experience and some familiarity with C, but very 
limited exposure to Motif. It took approximately 6 
months of elapsed time and 7 man-months of effort to 
complete the migration and conversion process. The 
relative efforts required were 2 man-months for the 
toolkit developer and 5 man-months for the 
application developer. This total time included the 
start-up time for the application developer to obtain 
the required proficiency in Motif, C++, and the 
existing toolkit. 

While these developers concentrated on the user 
interface conversion, another application developer 
continued enhancing the FORTRAN core of the 
application. Since the enhancements were made 
primarily to the application core and not to the user 
interface component, very little effort was required to 
merge these enhancements back into the Motif 
version. Once the Motif version was stable, the 
FORTRAN enhancements could be made directly in 
the new version. Furthermore, since the object 
interface toolkit simplified the programming of the 
user interface, very little time was required for the 
FORTRAN developers to become proficient in 
applying the new user interface. The application 
developers could make changes to the user interface 
without being highly proficient in C++ or Motif.



SPE 027560 T. LITTLE, D. CHIEN, R. CORBELL, M. A. RAHI, C. SINCLAIR 7 
Case 2: PREXEC

At approximately the same time as the GRIDGENR 
conversion was begun, it was determined that it would 
be valuable to have an application (PREXEC) to 
provide an interactive interface for entering and 
importing of production history data and other 
simulator recurrent data. Since there were no software 
developers available who were already proficient in 
Motif, it was decided that it was more important to 
produce this application quickly than it was to have a 
Motif application from the outset. It was, however, 
desirable for this new application to eventually be 
migrated to a Motif interface. Therefore, in the short-
term, functionality had to be provided using the 
existing software toolkits. 

The user interface components required for this 
application were pulldown menus, textual entry panels 
and selection boxes. These tools were all available 
within the existing toolkit and had corresponding 
components within the Motif widget set. The design 
and original development using the existing tools 
resulted in an application written in modular 
FORTRAN but displaying many of the look and feel 
qualities of a Motif based application. By this stage in 
the development process, the PREXEC application 
consisted of about 30,000 lines of FORTRAN code 
with 25 menus, 120 menu choices, and 17 data entry 
panels.

The application was designed with the intent of 
minimizing the code changes to the application when 
it was migrated to Motif. As can be seen from the 
architecture diagram in Figure 4, there is very little 
difference in the resulting architecture when compared 
to the original architecture (Figure 1). 

This migration, while in many ways quite similar to 
the one chosen for GRIDGENR, has one significant 
difference. Whereas the GRIDGENR application was 
restructured to remove the user interface from the 
application core, the route chosen for PREXEC kept 
the application and the FORTRAN interface to the 
tools intact and instead replaced the underlying tools. 

While this structure significantly simplifies the 
conversion process, it does have the disadvantage of 
restricting the application. Since the toolkit is 

designed as a subroutine task and is not designed to 
have application callbacks, each of the toolkit 
components operates in a modal manner where one 
operation must be completed before the next operation 
can be chosen. For this application, it was decided that 
the restriction of modality was not a significant 
drawback, and may indeed be an advantage in that it 
helps guide users through the application.

Application

Application
User
Interface

Database

Contouring
and
Curve
Fitting

XYPlot

FileIO Graphics C++ GUI Tool

PostScript

CGM

X11

MotifUNIX

Pulldown
Menu
Interface

Forms
Panels
Interface

PREXEC Architecture Diagram

Figure 4

Meanwhile, as the application was being developed 
with the existing menuing toolkit, the toolkit was 
simultaneously being migrated to Motif by a 
developer proficient in Motif. This toolkit conversion 
was layered on the user interface objects utilized for 
GRIDGENR. Each function of the existing toolkit was 
replaced with a corresponding Motif widget.

Once the toolkit conversion was finished, the final 
modifications to the PREXEC application were also 
made by the toolkit developer. Because of 



8 MIGRATING LEGACY APPLICATIONS TO OPEN SYSTEMS SPE 027560
requirements of the C++ language, the main routine 
became a C++ stub which called the PREXEC 
FORTRAN application. This restructuring and a few 
other minor modifications were the only necessary 
changes to the application. However, once the 
conversion was done, it became obvious that some 
additional application modifications would be 
desirable in order for it to behave more like a true 
Motif application. 

The conversion of the toolkit required the full time 
effort of the toolkit developer for 4 months. An 
additional 1 man-month of effort was spent to polish 
the resulting application, with that activity being 
shared between the toolkit developer and the 
application developer. Subsequently, several other 
applications which were based upon the existing 
toolkit have been converted with each application 
taking approximately one man-week to convert.

Case 3: HVWELL

As the development of PREXEC reached completion, 
a client inquired if this technology would be 
applicable to one of their internally developed 
engineering applications. Their application was a 
FORTRAN program for assisting with the reservoir 
simulation data entry requirements for a single well 
simulation model of a vertical or horizontal well4,5.

Development had been in the IBM-VM environment 
using SPF panels as the menu and data entry 
mechanism. It therefore had not been developed using 
the described toolkits. The application consisted of 
over 3,000 lines of FORTRAN code and 20 data entry 
panels. Several man-years of effort had been invested 
in this technology and the users had been very 
satisfied with the application. However, because of the 
restriction to IBM-VM and SPF panels, many users 
that would have liked to have had access to the 
application on an open systems platform discovered 
that it was not available.

The structure of the application indicated that the 
conversion process utilized for PREXEC could be 
applicable for this application as well. Since the 
toolkit had already been migrated to Motif, the 
majority of the conversion effort was to replace the 

SPF data handling facilities that were no longer 
available by utilizing the toolkits. The calculational 
portions of the application were changed only where 
absolutely necessary to implement the interface. This 
reduced the amount of debugging required on the 
client’s already proven application code.

Through this process, a Motif application was 
generated using 1 man-month of effort. Furthermore, 
continued development of the application will be 
possible by the client using known FORTRAN 
techniques.

Conclusion

Several legacy petroleum engineering software 
applications have been successfully migrated to an 
open systems environment using these techniques. A 
major restructuring of the applications for open 
systems would not only have been a substantial 
undertaking, but would also have required a 
significant training investment and corresponding 
time delay for the developers to reach sufficient 
proficiency. By focusing the limited resources that had 
the necessary Motif proficiency on the toolkit 
restructuring, the overall migration task was greatly 
expedited.

A second major advantage is in the area of application 
compatibility and integrity. Since the majority of the 
modifications are to the user interface component, the 
rest of the application remains unchanged. The static 
nature of the application core insures compatibility 
with previous versions and maintains the integrity of 
the application. 

One additional advantage is development continuity. 
Those developers already familiar with the application 
can continue to enhance the application using 
technology with which they are proficient. This 
enables training and experience with new technologies 
to be spread out over time and integrated with their 
existing knowledge base. Likewise, it removes the 
requirement that all developers be proficient in all 
technologies.

A potential advantage of the object interface that has 
begun to show recent dividends is the insulation of the 
application interface from Motif. Motif itself is not a 



SPE 027560 T. LITTLE, D. CHIEN, R. CORBELL, M. A. RAHI, C. SINCLAIR 9 
stagnant system and the changes from one release to 
another require changes only at the toolkit level. This 
greatly reduces the effort required to keep pace with 
changes in user interface technology, and could 
potentially allow for migration to other user interface 
technologies as they become the choice du jour.

The main limitation to the approach taken in the 
PREXEC and HVWELL conversions is the 
continuing modality of the applications. Although not 
a problem at this time, future desired enhancements to 
the applications may not be possible due to this 
restriction of the current implementation. 

In summary, the layered toolkit solution has allowed 
for the migration of several legacy applications to an 
open systems environment. Previous migration 
experience shaped the original design of the legacy 
applications and greatly eased the migration path by 
localizing the required modifications. The design of 
the underlying user interface toolkit was also flexible 
enough to relatively easily migrate an application 
which was not designed originally to use the toolkit. 
This process has retained the valuable components of 
the legacy applications. In this manner, open systems 
applications have been produced significantly faster 
than what would have been required for a software 
rewrite, while still preserving compatibility and 
reliability with the valued legacy applications.

Acknowledgments

The authors would like to acknowledge the efforts of 
all of the developers that have contributed to the 
development and enhancement of the legacy 
applications. It is because of their efforts that it has 
been worthwhile to migrate these applications to an 
open systems environment. We would also like to 
thank Ben Wang and Chester Hermes with Texaco Inc. 
for their assistance with the HVWELL conversion.

References

1. Choo, Y.K., Wethington, W. B., and Lederer, 
M. C., “Application of Preprocessing Software 
in the Initialization of Kuparuk Full-Field 
Model,” paper SPE 22311, presented at the 

1991 SPE Petroleum Computer Conference, 
Dallas, Texas, June 17-20.

2. Hazlett, W. G., Johnson, R. S., Sibley, M. J., 
Thompson, J. V., Hrkel, E. J., and Bazzari, J. 
A., “The Integrated Work Team Approach to 
Performing Reservoir Simulation Studies,” 
paper SPE 26224 presented at the 1993 SPE 
Petroleum Computer Conference, New Orle-
ans, Louisiana, July 11-14.

3. Foody, M., “Cross Platform portability: Look 
before you leap,” The X Journal (November-
December 1993) 96.

4. Wang, B., “A Parametric Study of Gas and 
Water Coning in Vertical and Horizontal 
Wells,” paper presented the 1991 Indonesian 
Petroleum Association, October 1991.

5 Wang, B., Markitell, B. N., and Huang, W. S., 
“Case Studies of Horizontal Well Design and 
Production Forecast,” paper SPE 25567 pre-
sented at 1993 Middle East Oil Technology 
Conference, April 1993.



10 MIGRATING LEGACY APPLICATIONS TO OPEN SYSTEMS SPE 027560
Figure 6

GRIDGENR After Motif Conversion

Figure 5

GRIDGENR Before Conversion to Motif


	Abstract
	Introduction
	Description of the Legacy Applications
	Initial Application Architecture
	Previous Migration Paths
	Open Systems Environment
	Alternatives Considered
	Table 1:

	What do you do when your engineering development staff cannot spell C or X?
	Migration Strategy
	Case 1: GRIDGENR
	Case 2: PREXEC
	Case 3: HVWELL
	Conclusion
	Acknowledgments
	References
	Todd Little, David Chien, Rory Corbell, M. Ahsan Rahi, Craig Sinclair
	Migrating Legacy Petroleum Engineering Applications to Open Systems Environments, or
	What Happens When the Petroleum Engineering Software Development Staff Can’t Spell C or X?
	SPE 027560

