

Copyright 1997, Society of Petroleum Engineers, Inc.

This paper was prepared for presentation at the 1997 SPE

This paper was selected for presentation by an SPE
Program Committee following review of information
contained in an abstract submitted by the author(s).
Contents of the paper, as presented, have not been
reviewed by the Society of Petroleum Engineers and are
subject to correction by the author(s). The material, as
presented, does not necessarily reflect any position of the
Society of Petroleum Engineers, its officers, or members.
Papers presented at SPE meetings are subject to
publication review by Editorial Committees of the Society of
Petroleum Engineers. Electronic reproduction, distribution,
or storage of any part of this paper for commercial
purposes without the written consent of the Society of
Petroleum Engineers is prohibited. Permission to
reproduce in print is restricted to an abstract of not more
than 300 words; illustrations may not be copied. The
abstract must contain conspicuous acknowledgment of
where and by whom the paper was presented. Write
Librarian, SPE, P.O. Box 833836, Richardson, TX 75083-
3836, U.S.A., fax 01-972-952-9435.

Summary

The buzz-phrase of the 90’s for the
petroleum software industry has become
“Buy, don’t Build”. For an end user in an
oil company, this generally means
acquiring application software rather than
developing it internally. The concept of
“Buy don’t Build” can also apply for a
software developer. Purchasing software
toolkit components can expedite the
development of an application as well as
reduce future support requirements.

Introduction

Recently, the desire to reduce costs
within the E&P industry has led several
companies to investigate the significant
expenses related to software
development costs. The overwhelming
conclusion of these investigations begot
a slogan for the 90's: Buy, don't Build.

“Buy, don’t Build” conflicts with the
industry’s prevalent "not-invented-here"
mentality (“I know what I really want so I
can do it myself and do it better.”). This
mentality breads a re-invention process that
can be very costly given the complexity of
today's software. Additionally, this
complexity makes it difficult to estimate
the cost and duration of the development
and maintenance activities, thereby
introducing significant risks. Almost
anyone in the software business can
recount horror stories of projects gone

awry. One way to reduce the software
development complexity is to utilize
software tools.

Our concern as a commercial software
application vendor is deciding how to
obtain the software tools necessary for the
application development. For many
components where off-the-shelf tools
provide the required functionality, the
decision to buy these tools is easy. In other
cases where what is needed is truly novel,
the decision to build may be obvious. It is
the area in between where technical and
economic analysis is required.

Buy Versus Build Economics

Building Software: One of the major
problems with economic analysis of the
buy versus build question is the accuracy
of the software development work
estimation. DeMarco1 (Figure 1) shows an
overwhelming bias of underestimation or
work effort with a factor of two being
fairly common.

Inaccuracies in the estimation procedure
are amplified by increasing complexity.
Next generation software is roughly four
times larger than its predecessor and the
exponential relationship between code size
and development effort magnifies this
inherent estimation risk. Ultimately, the
uncertainty and high cost of software
development provides a significant
incentive to look for alternatives.

Buying Software: Often, off-the-shelf
components can be purchased which meet
most requirements. The purchase cost will

usually be much less than internal
development since development cost are
effectively shared by many customers.
Risk is also reduced since the inaccuracy
inherent in the effort estimation is replaced
by bounded expenses.

Hidden Costs beyond the direct costs of
buying or building may be important. On
the build side, the opportunity loss as a
result of a delay in the time-to-market for
the application can be significant. On the
buy side, generic tools often end up
creating an incompatible environment or
bring hidden baggage with them.
Portability, optimization, and hardware
requirements should also be considered.

Hidden Benefits can often be reaped by
buying software. The product has been
designed by experts and has improved
through customer feedback. This greatly
increases the usability in other projects and
improves the likelihood of meeting future
unforeseen needs.

Some Specific Case Studies

C++ Base Class Tools: In our early C++
development we utilized classes for lists,
arrays, and strings that had been
developed by a member of our group
during university days. We incurred no
cost building the software, only
maintenance costs. Since a limited number
of developers were utilizing the tools we
decided productization was not necessary.

We recently re-evaluated the internal
tools. With more developers needing to

use the tools, productization had become a
significant issue. In the meantime, the
Rogue Wave Tools.h++ library had
emerged as an industry leader. After a
quick evaluation we determined that this
library was far richer in functionality,
designed much better, and was fully
documented. Just documenting our existing
toolkit would far exceed the acquisition
cost. As in this case, the economic
rationale favoring the buying of base tools
is typically overwhelming.

SPE 030886
Brief: Buy don’t Build - What does that Mean for a Software Developer?
Todd Little, SPE, M. Ahsan Rahi, Craig Sinclair, Western Atlas Software

3D Graphics: Our 3D applications
required several fundamental features:

• Fast interactive display.
• Software rendering to X-terminals.
• Scalable hardcopy to CGM/PostScript.
• Portability to most UNIX platforms.
• Interoperability with X windows.
• Compatibility with Motif.
• Efficient memory utilization

We were unwilling to accept a significant
performance degradation relative to our
existing SGI-GL prototype. Ideally, we
wanted an industry standard interface
which would handle our data efficiently.

Our search found no single solution which
met our needs. We therefore approached
the problem differently. Instead of looking
for a single solution we decided to combine
the interactive performance of GL with the
hardcopy and X support of HOOPS. The
applications would be shielded by an object
oriented middle level interface. This hybrid
approach of buying and building
minimized costs, while providing the
required flexibility.

XY Plotting Tools: A logical starting point
for our evaluation of XY plotting tools was
to consider utilizing our 3D tools library. In
fact, a functional prototype application was
built using the 3D tools, but it lacked the
polished look that we desired. We
estimated that at least 6 months would be
required to develop a minimal plotting tool,
thus providing incentive for us to
investigate purchasing a tool.

XRT/Graph from KL Group was a mature
product that was in wide industry use for
primarily business applications. It was
limited to two vertical axes and it did not
provide CGM output capabilities, both
critical requirements. A good example of
the 80/20 principle was exhibited when we
inquired into the possibility of adding these
features the tool; adding these features
would cost about 5 times the cost of the
base software.

In comparison to XRT/Graph, the PlotXY
widget by INT was primarily targeted to
the needs of the petroleum industry
providing multiple axes, and CGM and
PostScript hardcopy.

Upon completing the technical evaluation,
we continued with the economic analysis.
Figure 2 compares the timelines of buying
versus building. In the case of buying,

there would be start-up time associated
with training. Once the tool was
understood, the application development
could proceed. This significantly shortened
the time-to-market. Building required the
design and development of a toolkit before
the application development could get
underway, and continued maintenance of
the toolkit would rob valuable developer
time from the application development

From a cost standpoint, the acquisition cost
was far less than the expected burdened
development costs. Furthermore, the risks
associated with the development estimation
and probability of future ongoing
maintenance costs greatly favored the
decision to buy.

Conclusion

The major driving forces in the buy versus
build economics come from increasingly
complex software development tasks. For
many reasons, software expenses have
traditionally been underestimated. This
underestimation will probably continue,
greatly increasing the risks associated with
software development. These high costs
and risks give a great incentive to consider
alternatives such as buying off-the-shelf
software.

Our direct experiences showed that the
economic rationale favoring buying C++

base class tools was overwhelming.
Documentation and productization costs
for our internal tools would far exceed the
purchase cost. For 3D graphics tools, no
off-the-shelf package was considered
acceptable. However, a combination of two
tools was a viable alternative and we thus
chose a hybrid “buy and build” alternative.
This approach minimized the costs
associated with building while providing
the flexibility required to meet our needs.
With regard to XY plotting tools, it would
have been easy for the “not-invented-here”
syndrome to set in and for us to have
developed our own tools. In this case, “Buy
don’t Build” encouraged us to analyze the
situation to determine the best alternative.
Our analysis showed both that the direct
development cost of building would exceed
that of buying, and that there would be a
significant hidden cost generated by the
delay to market. The benefits of a generic,
productized tool would also encourage
future reuse and probable cost savings.

Sometimes internal development is
necessary in order to meet requirements. If
an off-the-shelf package can meet most of
the requirements, then “Buy don’t Build”
can be a significant cost saver.

References
1. DeMarco, T., “1978-1980 Project

Survey, Final Report,” New
York, NY, Yourdon Inc., 1981.

Figure 2

