
Copyright 1997, Society of Petroleum Engineers, Inc.

This paper was prepared for presentation at the 1997 SPE Petroleum Computer Conference
held in Dallas, Texas, 8-11 June 1997.

This paper was selected for presentation by an SPE Program Committee following review of
information contained in an abstract submitted by the author(s). Contents of the paper, as
presented, have not been reviewed by the Society of Petroleum Engineers and are subject to
correction by the author(s). The material, as presented, does not necessarily reflect any
position of the Society of Petroleum Engineers, its officers, or members. Papers presented at
SPE meetings are subject to publication review by Editorial Committees of the Society of
Petroleum Engineers. Electronic reproduction, distribution, or storage of any part of this paper
for commercial purposes without the written consent of the Society of Petroleum Engineers is
prohibited. Permission to reproduce in print is restricted to an abstract of not more than 300
words; illustrations may not be copied. The abstract must contain conspicuous
acknowledgment of where and by whom the paper was presented. Write Librarian, SPE, P.O.
Box 833836, Richardson, TX 75083-3836, U.S.A., fax 01-972-952-9435.

Abstract

Changes over the last decade in both the oil industry and the
computer industry have substantially complicated the process
of delivering software applications. The oil industry has gone
through a significant downsizing, while computing advances
have users constantly demanding more complete and
integrated solutions. Several oil companies’ response to this
dilemma has been to establish a policy of "Buy, Don't Build."
This mindset is often useful, but does not directly address the
real question of how to maximize and leverage limited
resources in order to efficiently deliver the necessary
applications to the user community.

This paper delves beyond the bipolar buy versus build
question to present experiences with various approaches that
have been used to deliver software. Among the methods
discussed are software tools, research institutions, consortia
projects, alliances, and industry standards.

Introduction

Both the oil industry and the computer industry have gone
through significant evolution during the last decade. The
challenge of delivering software applications to the oil
industry has been intensified by the rapid advances in
computing technology and further complicated by the
downsizing of the petroleum E&P industry. The old paradigm
where oil company internal R&D labs deliver the software
applications to their internal customers is difficult to maintain

with these contrasting forces. R&D departments have needed
to change from pure research organizations to value added
entities.1 As a result some oil companies have established a
new mindset of "Buy, Don't Build."

While this is often a useful distinction, buy versus build is far
too polar. The complexity of delivering software in today's
rapidly changing environment requires maximizing limited
resources. In our efforts as a software vendor we have had
experiences with a number of techniques to leverage our
software development resources, among them software tools,
research institutions, consortia projects, alliances, and industry
standards. These alternatives all fall somewhere in the buy-
build spectrum. This paper presents some of the benefits and
limitations of these approaches.

Changes in the E&P and Computing Industries

Oil companies have always recognized the need for computer
software. Ever since the first vacuum tube computers, oil
company R&D departments have been right behind providing
software technology. Access to software solutions was

SPE 38120

Buy, Build, Beg or Borrow: Delivering Applications in the New Age of Software
Development

Todd Little and Steve Webb, Landmark Graphics

Oil Company Information
Technology Expenditures
decreased by 25% from 1987-1993

Trends in Software complexity

Moore’s Law: Computational
power increases 4X every 3 years

Figure 1

2 TODD LITTLE AND STEVE WEBB SPE 38120

considered a competitive advantage. However, over the last
decade both the oil industry and the computing industry have
gone through major changes. Decreasing or flat oil prices
have resulted in significant downsizing in the E&P industry,
particularly in oil company R&D organizations.

As oil companies searched for cost cutting targets they
realized that the cost of developing their custom applications
was quite large. Software development projects repeatedly
overran their initial estimate, often twofold2. In 1996, 73% of
corporate America's software projects were canceled, over
budget, or late.3 Just maintaining software is expensive and
often as much as 2/3 of the software cost is incurred during
the maintenance phase.4

As shown in Figure 1, it is estimated that the oil companies
reduced their information technology spending by 25% from
1987-19935. Meanwhile, computing technology has continued
to advance, with major growth created by the personal
computer and the computer workstation. Ironically, the
advances in computing technology and software solutions is
perhaps one of the factors that enabled the oil industry to
survive during this downsizing era.

Thus the need for software applications grew while the
resources available to develop those applications shrunk.
Specialized software vendors sprung up and grew to respond
to this need. Most of these vendors started by simply
providing much of the same services that had been provided
by the downsized internal R&D. Typically vendors developed
a specific solution to a domain need.

However, the constant drive to increase efficiency has led to
other important changes in the way we find and produce oil
and gas. Reservoir studies are now often performed by
integrated teams of geophysicists, geologists, petrophysicists,
and reservoir engineers.6,7,8,9 Sometimes these integrated
teams are made up of representatives from several oil
companies that are partners in the field. This has increased the
need for higher degrees of integration between software
applications. This demand for integration added another major
complication to software development and raised the cost of
developing software considerably. The larger vendors
responded to this need by improving their own integration and
by acquiring other vendor applications to bring under their
fold. The consolidation of the vendor industry over the last
two years is remarkable. Of the 9 vendors involved in the
Simulation Application View of Epicentre (SAVE) project, all
but two merged, were acquired or were the acquirer of one of
the other participants.10

Yet the need to develop new and more integrated software
application suites seems insatiable. Oil companies and
vendors still must optimize their scarce developer resources.
In our effort to produce software applications we have
experimented with a number of different options which have
the potential to increase the leverage of our developers.

Software Tools

As a software developer one method that we have used with
success is to look at the question of buy versus build with
regard to our own application development. In many cases we
have found that development time can be substantially
reduced by purchasing components which can be used and
reused in software applications. As this is covered extensively
in a previous paper we will not go into great detail.11 Suffice it
to say that this method can be very effective in reducing
software development costs. It is not without problems,
however. Even though the tool is being supported by the tool
vendor, once it is included in an application it is the
application developer’s obligation to support the overall
package. This can be frustrating, particularly if release cycles
are out of phase. We have found that the best solution to this
problem is to establish good relations with the software tool
provider. Another concern is overall software integration
issues. One software tool may be very suitable to a particular
task, but if it is incompatible with another tool or other parts
of the application suite, then the gains realized may be eroded
by substantial rework in order to make it compatible.

Sometimes it is not a question of buy versus build, but rather a
question of take versus build. Today the Internet opens up a
great wealth of public domain tools. Sometimes these tools
can be used directly as is. Often what is available is a
prototype of a code fragment which can be used to jump start
a project. We have successfully made use of both types in our
applications. But while the price is right in one sense, there is
no such thing as a free lunch. There is no doubt that there is an
abundance of public domain software. The downside is that a
lot of it is junk. It may take a lot of “surfing” in order to find
something that fits a particular need. And do not forget the
high cost of maintenance. Once a software developer
incorporates the public domain software into their application,
they have the obligation to maintain it. As opposed to a
purchased tool, a public domain tool is unlikely to have a tool
vendor available to help with support or maintenance. This
free software may end up costing a significant amount in the
long haul. Caveat Emptor.

Research Institutions

One of the big advantages of the Internet is that it opens the
door to the activities of other industries. We have also had
similar benefits from working with national laboratories. In
1995, the Department of Energy formulated the Advanced
Computing Technology Initiative (ACTI). We were involved
in a number of these projects and found that we had particular
success from one of the projects.12 There were a number of
reasons for this success. This project involved a very limited
number of participants and was very focused in its objectives.
That focus, combined with the ability of the lab to leverage
some of the technology from other industries, such as
aerospace, led to a very productive project. We have also been
involved in a number of other consortia projects with research
organizations and universities. Our experience has shown that

SPE 38120 BUY, BUILD, BEG OR BORROW: DELIVERING APPLICATIONS IN THE NEW AGE OF SOFTWARE DEVELOPMENT 3

the effectiveness of these projects degrades significantly as the
number of participants increases and the scope broadens.

Consortia Projects

While research institutions can help leverage technology from
other industries, often the research we need is very specific to
our industry. Whereas in the past each individual oil
company’s R&D department was seemingly in competition to
do this research, now often the desired objective is simply
getting the technology to the business units and doing so as
efficiently as possible. In some cases a software vendor
conducts its own research and comes out with a product
hoping that it addresses the market needs. Another model is to
conduct the research as a consortia project. Here the software
vendor has an idea for research technology with a fairly good
indication that this technology is feasible. The vendor solicits
oil company sponsors who participate in funding the project
and monitoring the results.

We have had a number of successful consortia projects in the
areas of reservoir simulation solver and parallelization
technology.13,14,15,16 The consortia members have benefited by
getting the technology to their users in a timely manner and by
having a say in what went into the technology. In some cases
the participants use our software directly, and in other cases
have incorporated the produced software components into
their own in-house software development. In general, they
have also benefited by obtaining the technology at a lower
cost than if they had waited for a vendor to produce the
product on their own. Indeed, oil companies often take the
view that if funding is not provided the products they want
will not be produced. As a vendor, we were able to reduce the
research risk and were able to receive direct feedback from the
oil company during the research development. A result is that
we have produced products usable by a broad market.

If membership of these consortia is sufficiently large, projects
of this kind can have a very high leverage of resources and
this is the real attraction of these consortia. Often, for no more
than the equivalent cost of a man year of internal effort, the oil
company can have access to research or software that is the
product of many man years effort. Moreover, the software
vendor can then take to market a fit-for-purpose product than
already has an established user base, thereby leveraging the
value of the software far beyond its original funding.

Alliances

Another of the today’s buzzwords is “alliance.” The
definition of “alliance” in The Concise Oxford Dictionary is
“union ... joining in pursuit of common interests.”17 But most
alliances are not born with union of purpose in mind. Rather
they are an uneasy marriage of diverse objectives. These
objectives will vary depending upon the type of partnership.
For the software vendor the alliances can come in several
forms: they can partner with oil companies, hardware vendors,
or even with other software vendors. We have been involved
in each of these three types of alliances and have had

experiences to indicate what works well and what does not.

Oil company / Software vendor. Our alliances of this type
have fallen into three categories: funded development where
the oil company participates in the specifications of the
software but leaves the software development entirely to the
software vendor, outsourcing where the oil company builds a
prototype or possibly a complete product before turning it
over to a vendor for maintenance, and joint development
where both oil company and vendor actively work together to
develop the software.

Funded development is the most traditional vendor-oil
company relationship. Often an oil company has a specific
need, but does not have the capability or the desire to develop
the software internally. In our experience with funded
development, the oil company has participated closely in the
specification phase but has relied entirely on the software
vendor for the development of the software. The oil company
has participated again prior to software release in the latter
stages of testing. The benefit of this model for the oil
company is that they get early access to software designed for
their specific purpose. For the software vendor the benefit of
this approach is that all software development is carried out
under its control. However, to provide the custom software
development services, often at short notice, means that extra
resources have to be found or other planned developments get
delayed. The real issue here is leverage. If all that has
happened is that one-off development is now done by
software vendors rather than oil companies, then in the big
picture we have done nothing but shuffle resources. On the
other hand, if the developed software fits into the software
vendor’s strategic offering, then this can be a big win for both
sides.

An outsourcing relationship has a lot in common with the
funded development model, but it starts in an entirely different
way. Usually the oil company has developed software that
they to want to have available to their users but which they do
not consider proprietary. At some point, they consider
licensing or outsourcing it to a software vendor in order to
make the technology generally available and to reduce their
maintenance expense. The oil company wins by keeping the
desired technology available at a reduced expense. Again the
software vendor gains if they are able to leverage this
technology and merge it with their existing software offerings.
There are a number of caveats for the vendor, however. Often
what is developed is a prototype or simply an algorithm.
Turning that into a product and integrating it with an existing
product offering can be a significant effort, perhaps as much
as nine times the original effort.18 Furthermore, maintenance is
now the responsibility of the vendor. These problems are
exasperated if this relationship takes the form of licensee-
licensor rather than as a partnership or alliance. If the
relationship is formed primarily as a cost cutting attempt, then
it will rarely be effective. However, if the product fits the
vendor’s strategic direction and can be leveraged

4 TODD LITTLE AND STEVE WEBB SPE 38120

appropriately, then the other costs may be worthwhile.

Joint development is more of a true alliance. In this model
both the vendor and the oil company participate in all phases
of the software development project. Resources are
contributed from both participants. A very close and long
term relationship between the vendor and the oil company can
develop which can be very beneficial for both participants.
The oil company gets fit-for-purpose software and the vendor
has a ready made market for its product. For the vendor an
additional benefit of this relationship is the access to well-
qualified staff within the oil company. These staff tend to be
well in tune with the needs of the oil company and the needs
of users in general. On the other hand, joint development is
very hard to coordinate, especially at different sites. To
prevent two versions of the software emerging, good
communication is paramount and sharing of resources
desirable. We have found that to keep the code development
properly managed it is necessary to rotate our development
staff through the oil company’s office on a regular basis.
Ownership of the oil company developed code is another
issue. Usually the oil company does not want the ongoing
responsibility for code maintenance and is only too happy to
relinquish ownership. However, that too creates problems
because an effective technology transfer mechanism has to be
found to teach the software vendor how to use, modify and
understand the oil company developed code. This is a
particularly challenging task.

The key challenge to making these alliances successful for the
software vendor is to find a way of leveraging the work. If
these developments can be added in a way that makes them
applicable and attractive to a larger user base than the original
clients then adding these enhancements is a sound business
proposition. If this is not the case then support costs for these
enhancements will soon erode any benefit. Indeed unless a
development is in the long term strategic direction of the
software product, the software vendor should always say no to
the oil company no matter how well the original development
is funded.

Software vendor / Hardware vendor. An alliance between a
software vendor and a hardware vendor tends to form in
reaction to some market force rather than be planned as part of
an overall long term strategy. Often in order to break into or
maintain market share in a target market segment a hardware
vendor will shower the software vendor with free hardware
and resources. Likewise a software vendor may try to get a
competitive advantage by teaming up with a hardware vendor
to exploit a new hardware innovation or development. We
have succumbed (and continue to succumb) to both these
temptations. However, the hidden cost is high to the software
vendor in both these cases. Free machines often come with
new or even unreleased systems software which require
significant debugging (by the software vendor usually). And
the free resources do not usually have the required skills and
experience to be useful without significant investment of

effort on the part of the software vendor. In this age of rapidly
changing hardware technology, any new hardware innovation
is usually short lived, and if it is of any significance, taken up
by another hardware vendor almost immediately.

We have, however, had some long term highly productive
relationships with some hardware vendors. One such joint
cooperative development agreement has lasted over five years
and has evolved as the hardware and software markets have
evolved. This relationship was put together for the long term
mutual benefit of both parties rather than aimed at a short term
tactical objective. During the relationship, there have been
some short term tactical projects, but these have been
executed efficiently because we already had the infrastructure,
and more importantly the personal relationships in place. No
steep learning curve by the hardware vendor was necessary
and the resources offered were efficiently used. Machines
were already in place or could be added easily to our existing
infrastructure, and the programming help was already familiar
with the demands of our applications. From the hardware
vendor’s perspective, it had a long term supply of applications
ready to go on its latest hardware - the most important
requirement for selling new boxes.

Software Vendor / Software Vendor. It is also usually
market forces which prompts a software vendor to pursue an
alliance with another software vendor. As a software vendor
is building an integrated product suite they will realize that
they cannot do it on their own. By forming a relationship with
another vendor with expertise in the missing critical areas
both parties hope to leverage off the other. In order for these
partnerships to be successful it is important not just to have a
collection of products but to also have them well integrated.
This requires a close relationship with strong commitments
from both sides. However, these relationships can be difficult
to manage as either party may view the other as a potential
competitor ready to steal its market.

Standards

One trend over the last decade common to both the oil
industry and the computer industry has been the strive towards
standards. The proliferation of computing architectures and
software implementations almost guaranteed an integration
nightmare. There were hopes that standardizing on common
interfaces would drastically reduce the effort required to
produce integrated software.

In the computing industry this worked fairly well with
organizations such as X/Open and OSF (Open Software
Foundation). One of the primary reasons for success was that
the computer hardware was evolving with the standards. In
fact, it could be said that those companies that tried to retrofit
their older hardware and operating systems were the ones that
did not fare well in this environment. Overall the computing
industry did not face a large “legacy” problem.

In oil industry software development we do not have that

SPE 38120 BUY, BUILD, BEG OR BORROW: DELIVERING APPLICATIONS IN THE NEW AGE OF SOFTWARE DEVELOPMENT 5

luxury. We have both legacy data and legacy applications.
Our data is a major asset that we cannot ignore, and modifying
legacy applications working off legacy data stores is a major
undertaking. Furthermore, in the oil industry we have a lot of
data and data types. The Petrotechnical Open Software
Corporation (POSC) has taken on the monumental task of
defining standard data mappings for all of the data that we use
in the E&P industry. Industry take-up of these standards has
been slow for a number of reasons but primarily because the
enormous cost of legacy migration. This is perhaps ironic
given that one of the purposes of defining standards was to
reduce the cost of delivering integrated solutions. While this
is likely true in the long term, there is no doubt that migrating
legacy applications and legacy data to any standard is very
expensive. Studies have shown that the cost of making a
change in an application once it has been deployed can be
over 100 times what it would have been had that change been
included in the specifications.19

One of the POSC related groups we have been involved with
has had some success working with the POSC standards.
Clear business drivers led a group of oil companies and
vendors to form the S.A.V.E. alliance.10 They of set out with
the specific objective of validating the POSC data model in
the area of reservoir simulation. While the project was
relatively successful at evolving an improved data model for
reservoir simulation, industry take-up of the model has been
slow and some might argue that since the S.A.V.E. alliance
has disbanded that it was not successful. We believe the
contrary. The S.A.V.E. members realized that the business
environment had changed and they had accomplished as much
as could be accomplished given the business drivers. Short
term gains were unlikely, but they recognized the potential for
the long term and remain committed to the objectives. In that
vein, the findings from the project are of great help in
planning the evolution of existing and future applications.

Conclusion

There is no doubt that we have entered a new age of software
development in the exploration and production industry. The
software needs of the users in the industry has long outgrown
what a few scientists in an R&D department can provide. Oil
company R&D departments can still play a critical role in the
software development process, but their role has changed
from technology developers to technology providers. They
now must leverage their efforts off others. Likewise the
software vendors have realized that they can not do it all on
their own. Fortunately, software providers have a portfolio of
potential software development methods which can help
leverage developer resources. Software tools, research
institutions, consortia projects, alliances, and industry
standards can all provide effective means to help deliver
software applications. However, the cost of leveraging these
tools should not be overlooked or underestimated. The
investment required to start leveraging these tools can be
significant. Not surprisingly, in nearly every case where we

have used one of these methods and had a positive experience,
the project objective has been consistent with our long term
strategic objective. Likewise, most of our problems have
come when we have looked to these methods to provide a
quick fix.

References

1. Clementz, D.: “Company R&D: Does It Add Value to the
Bottom Line”, Journal of Petroleum Technology, Vol. 49, No.2.
(February 1997).

2. King, J.: “IS Reins in Runaway Projects”, Computerworld, Vol
31, No 8.

3. DeMarco, T.: Controlling Software Projects. Yourdon Press,
Inc., New York, NY, 1982

4. Zelkowitz, M. V.,:“Perspectives on Software Engineering,”
ACM Computing Surveys, June 1978.

5. Cambridge Energy Research Associates: The Quiet Revolution:
Information Technology and the Reshaping of the Oil and Gas
Business, Cambridge Energy Research Associates, 1996.

6. Caamano, E., et al: "Integrated Reservoir Interpretation",
Oilfield Review, (July 1994) 50.

7. Balough, S., et al: "Managing Oilfield Data Management",
Oilfield Review, (July 1994) 32.

8. Dria, M.A. and Aronstam, P.: "The Use of Integrated Software
for Improved Reservoir Management, paper SPE 28934
presented at the 1994 SPE Annual Technical Conference and
Exhibition, New Orleans, LA, Sept 25-28.

9. MacKenzie, A.S., "Trends in Reservoir Performance Prediction,
paper SPE 28387 presented at the 1994 SPE Annual Technical
Conference and Exhibition, New Orleans, LA, Sept 25-28.

10. Haringa, H., Little, T., Aydelotte, R., and Austin, A.: “SAVE:
An Alliance for Reservoir Simulation Software Integration”,
SPE 36759, Journal of Petroleum Technology, Vol. 48, No. 6.
(June 1996).

11. Little, T,, Sinclair, C, and Rahi, M, A.: “Buy Don’t Build: What
Does That Mean for a Software Developer”, SPE 28255 Journal
of Petroleum Technology, Vol. 47, No 6. (June 1995)

12. Bethel, W., Jacobsen, J., Austin, A., Lederer, M. and Little, T.:
“Implementing Virtual Reality Interfaces for the Geosciences”,
paper presented at the 1996 Virtual Reality in the Geosciences
Conference, Halden, Norway, June 24-26.

13. Wallis, J. R., Foster, J. A., and Kendall, R., P., A New Parallel
Iterative Linear Solution Method for Large Scale Reservoir
Simulation”, SPE 21209 presented at the Eleventh SPE
Symposium on Reservoir Simulation, Anaheim, California,
February 17-20, 1991.

14. Wallis, J. R, Nolen, J. S., “Efficient Linear Solution of Locally
Refined Grids Using Algebraic Multilevel Approximate
Factorizations”, SPE 25239 presented at the Twelfth SPE
Symposium on Reservoir Simulation, New Orleans, Louisiana,
February 28-March 3, 1993, No. 12 (December 1976), pp

6 TODD LITTLE AND STEVE WEBB SPE 38120

1226-41.

15. Killough, J. E., Foster, J. A., Nolen, J. S., Wallis, J. R., and
Xiao, J., “A General Purpose Parallel Reservoir Simulator”,
presented at the 5th European Conference on the Mathematics of
Oil Recovery, Leoben, Austria, 3-6 September 1996.

16. Killough, J. E., Camilleri, D., Darlow, B., and Foster, J. A., “A
Parallel Reservoir Simulator Based on Local Grid Refinement”,
SPE 37978 presented at the Thirteenth SPE Symposium on
Reservoir Simulation, Dallas, Texas, June 9-11, 1997.

17. The Concise Oxford Dictionary, Sixth Edition, Oxford
University Press, Oxford, 1976, 26.

18. Brooks, F. P. Jr.: The Mythical Man-Month, Addison-Wesley
Publishing Company, Inc., Reading, MA, 1975

19. Boehm, B.: “Software Engineering”, IEEE Transactions on
Computers, Vol C-25

