
References at end of paper

SPE
Society of Petroleum Engineers

SPE 028255

Buy don’t Build - What does that

Mean for a Software Developer?

Todd Little, SPE, M. Ahsan Rahi, Craig Sinclair,
Western Atlas Software
Copyright 1995, Society of Petroleum Engineers, Inc.

Permission to copy is restricted to an abstract of not more than 300 words. Illustrations may
not be copied. The abstract should contain conspicuous acknowledgment of where and by
whom the paper was presented. Write Librarian, SPE, P.O. Box 833836, Richardson, TX
75083-3836, U.S.A., fax 01-214-952-9435

Abstract

The buzz-phrase of the 90’s in the petroleum industry has
become “Buy, don’t Build”. For an end user in an oil
company, this generally means acquiring application software
rather than developing it internally. For a software developer,
either within an oil company or with a software vendor, the
concept of “buy don’t build” can apply to software toolkit
components and can expedite the development of an
application as well as reduce future support requirements.

This paper presents several software tools and the process by
which they were evaluated for use in a commercial petroleum
engineering application (DeskTop VIP). It highlights the
tendency in the software development process to
underestimate the complexity of the development process, as
well as to underestimate the value of the services provided by
a software tool. Ultimately, the decision of “buy don’t build”
should be an economic decision. As a slogan, it reminds us
that whenever one considers building or developing new
software, one should also consider the possibility that buying
off-the-shelf software could cost less in the long run and bring
a product to completion quicker.

Introduction

Recently, the desire to reduce costs within the E&P industry
has led several companies to investigate the significant
expenses related to software development costs. The
overwhelming conclusion of these investigations begot a
slogan for the 90's: Buy, don't Build.

“Buy, don’t Build” conflicts with the industry’s prevalent
"not-invented-here" mentality (“I know what I really want so I

can do it myself and do it better.”). This mentality breads a re-
invention process that can be very costly given the complexity
of today's software.

One of the major problems in making sound business
decisions with regard to buying versus building software is the
difficulty of estimating the cost and duration of the
development and maintenance activities. Most organizations
and individuals in the software development business can
recount endless horror stories of software development
projects gone awry. Studies have shown that typical software
development estimates are significantly less than what is
eventually required for the development and maintenance
task.

This paper focuses on the economics of buying versus
building software components. It is presented from the
viewpoint of a commercial software application vendor
concerned with deciding how to obtain the software tools
necessary for the application development. Several specific
examples of software tools and the process by which they
were evaluated for use in a petroleum engineering application
(DeskTop VIP) are presented. For many components where
off-the-shelf tools provide the required functionality the
decision to buy is easy. In other cases where what is needed is
truly novel, the decision to build may be obvious. It is the area
in between where thought and analysis are required.

Much of the process discussed will be applicable whether one
is concerned with software components or with complete
applications. Although the perspective is presented from that
of a software vendor, most of the discussion of software tools
should be applicable to an internal development effort as well.

Buy versus Build for Software Components

Today's software applications are typically built from many
software components or tools. For many of those components
it is taken for granted that they will be bought. Almost no
application software developer today would build operating
systems, compilers, windowing systems, or base level user
interface libraries. Those tools have become industry
standards and are built for the mass market making them so
inexpensive that no economic analysis is required to
determine that buying them is far preferable to building a
specialized tool. Other components such as editors,
development environments, documentation tools, and license
managers are also so inexpensive that building such
components would be many times more costly. As
components become intertwined with the application and
closer to the software development task, the economics
become less self evident and the "not-invented-here"
syndrome starts to bias the developers towards building
instead of buying. This bias can be extremely expensive and
very risky in many cases.

2 BUY DON’T BUILD: WHAT DOES THAT MEAN FOR A DEVELOPER SPE 28255

The Economics of Building Software

When evaluating the buy versus build economics for a
software project it is important to consider all aspects of the
software project from its initial conception to its final
obsolescence, commonly referred to as the software life cycle.
In the case of a software development project, the generally
recognized phases of the software life cycle are:

• Requirements
• Specification
• Design
• Code and Debug
• Testing
• Documentation
• Training
• Operation and Maintenance

One of the major problems with performing an economic
analysis of the buy versus build question is the degree of
accuracy in the work estimation process for software
development tasks. Figure 1 shows an industry survey by
DeMarco1,2 of actual efforts versus estimated effort. From the
graph it is clear that estimation has been an inexact science
with an overwhelmingly bias towards underestimation. In fact,
the data would suggest that projects in general took twice as
much effort as was estimated.

The problem with software development estimation is
exacerbated by the ease with which one can neglect critical
components of the software life cycle from the overall work
estimate. In severe cases where the "not-invented-here"
syndrome has taken over, one looks just at the coding phase
and grossly underestimates the true cost of the total
development effort. Figure 2 from Zelkowitz3,4 shows the
importance of viewing the total picture. Not only is coding a
relatively small component of the initial product development,
it is totally dwarfed when the huge costs of software
maintenance are included.

A similar perspective is provided by Brooks5. He poses the
question that if two people coding in a remodeled garage can
make astonishingly useful programs in short order, then why
haven't all programming teams been replaced by dedicated
garage duos? His answer is that what these duos have
generated is a program, complete in itself, ready to be run by
the authors on the system on which it was built. In order to be
generic, tested, documented and thus become a program
product, Brooks estimates it will cost at least three times as
much. The original program is also isolated from other
products. To become integrated and part of a programming
system, Brooks estimates the cost to be at least three times as
much as the original effort. For the program to be truly useful,
both the productization and the systems integration are
required which therefore costs nine times as much as the
original program. This relationship is depicted in Figure 3.

Risks in the estimation procedure are magnified by the
increasing complexity of today's software projects. As
software programs live out their life cycle they are generally
replaced by more complicated and significantly larger

SPE 28255 T. LITTLE, M. A. RAHI, C. SINCLAIR 3

programs. Data from several sources6,7,8 showing the increase
in code size from one generation of software to the next is
plotted in Figure 4. There is a strong nearly linear correlation
between lines of code in one generation and lines of code in
the next generation. A factor of four appears to be a good
approximation for relatively large projects while smaller
projects may grow even larger.

 This four-fold increase could be worse than it seems.
Studies5,6,9,10,11 have proposed relationships between
programming effort in man-time and the size of the program
in lines of code.

Effort = K . sizeb

These studies have b ranging from anywhere from 1.05 to
1.75. Figure 5 shows the danger of linearly extrapolating the
previous development effort to obtain an estimate for the new
effort. Since the previous program size was one fourth of the
expected new size, linear interpolation would give four times
more effort. Assuming a value of b=1.5, however, suggests it
would more likely require eight times the effort, an
underestimation by a factor of 2.

The inherent risk of underestimation should be factored into
the total direct development costs. Ultimately, the high cost of
software development provides a significant incentive to look
for alternatives.

The Economics of Buying Software

Purchasing off-the-shelf software components can provide
several economic benefits. If the requirements are met by off-
the-shelf packages, typically the acquisition cost is low as the
cost of development is shared by many customers. Risk is
reduced since much of the inaccuracy inherent in the
estimation of new development effort is replaced by bounded
expenses.

Just as with software development, acquired software
components have a life-cycle and associated costs at each
stage. From the point of view of the purchaser these phases
are:

• Requirements
• Specification
• Evaluation
• Acquisition
• Integration
• Enhancement
• Testing
• Training
• Operation and Maintenance

The requirements and specification phases are generally
independent of whether one is buying or building. Certainly
once one starts into the evaluation phase and determines that
one of the requirements cannot be met, it is a good reality
check to determine if this requirement is really necessary.
Often software development tasks are driven by the 80/20
rule: 20% of the product ends up costing 80% of the total
effort. Thus if one can live with 80% of the product it can be
obtained for 20% of the cost. The reality check is do you
really need the last 20% and is it really worth five times more?
This is especially true when buying software, since the
acquisition cost is typically only a fraction of the total cost
invested in the product by the vendor.

The differences in the buy versus build software life cycles are
accompanied by differences in the cost equations. The cost of
the evaluation phase includes the man-time for the evaluation
plus any out of pocket expenses required to complete the
evaluation. It is the acquisition phase that is the most
commonly associated with buying software since it is the
point where license fees are paid and where the commitment
to a vendor relationship is made.

During the integration, enhancement, and testing phases the
software is fit into the buyer's environment to accommodate
their specific needs. Costs can be incurred as in-house man-

4 BUY DON’T BUILD: WHAT DOES THAT MEAN FOR A DEVELOPER SPE 28255

time or can be contracted from the vendor. Typically a buyer
is asking for future problems if they undertake any
enhancements themselves, unless the vendor is willing to
incorporate those enhancements into future releases. In fact, it
is often beneficial to insulate the applications from direct
utilization of the vendor toolkit in order to reduce dependency
on the vendor and to provide future migration paths. Once the
software is in place, usability of the software will require
training. Training courses can be very expensive to prepare
and present. Fortunately, most vendors will be able to contract
to provide training thus sharing the training costs among
several customers. After the applications have been
developed, redistribution costs may be incurred once they are
deployed. Lastly, while the applications are undergoing their
life cycles, the software components are also being enhanced
and maintained incurring maintenance costs.

Hidden Costs

Beyond the direct costs of buying or building, there are
several hidden costs to be considered. On the build side,
perhaps the most significant hidden cost is the opportunity
loss as a result of a delay in the time-to-market for the
application. A significant time period may be required to build
a component delaying the deliverability of the end product as
a consequence. When an off-the-shelf component is ready to
be used immediately or with minimal enhancements, this can
be an important differentiation. Other hidden costs result if the
development activity is not in the developer's core business
area as expertise and specialization are focused towards a non-
core area. This specialization often requires training to support
the development activity. Since the expertise is often not
transferrable to the company's core business area, the career
paths of the specialized developers are limited. Not
surprisingly, this perpetuates the "not-invented-here"
syndrome as developers begin to defend their turf.

Buying software also brings some hidden costs. The most
common hidden cost associated with buying software is the
cost of working through bugs in the vendor product. Bugs and
poor software reliability can be costly to the user. However,
this cost should not be overestimated since in reality it exists
for internally developed software as well. The good news
when buying is that the vendor has the responsibility to fix the
bugs. The bad news is that they may not consider it to be
anywhere near as critical as the buyer knows it to be. This is
just one of the reasons that a good relationship with the
vendor is very important. Other hidden costs of buying can
come from buying into a generic off-the-shelf package. Often
the necessity to have a generic tool ends up creating an
environment which creates incompatibility with other

components or brings hidden baggage with it. Portability,
optimization, and hardware requirements are also potential
costs to be considered.

Hidden Benefits

In addition to the costs, it is also useful to consider some of
the additional hidden benefits that can be reaped by buying
software. An important consideration is that generally the
purchased software is in the vendor's core business area and
therefore the vendor has developed a specialization in that
area. As a result the product has been designed by experts and
the vendor has improved the product to meet many objectives
by responding to customer feedback. Generally, the vendor
has completed both the productization and integration
processes. This greatly increases the probability that the
component can be reused in other projects. It also improves
that chance that the product will be able to meet future
unforeseen needs. The productization step should not be
underestimated. Often, just the value of the documentation
justifies the cost of the acquisition.

Some Specific Case Studies:

C++ Base Class Tools: Buy Generic Tools

When we started C++ development in 1990 our group
acquired generic public domain C++ classes. These base
classes provided facilities for doing lists, arrays, and strings.
One member of our group had been active in the development
of the tools during his university days and had used them
substantially. As a result, there was no base cost in building
the software and there was only a minimal learning curve
required to use the classes. Since only a limited number of
developers were utilizing the tools it was decided that real
productization was not necessary.

We recently we went back and reevaluated the internal tools.
With more developers needing to use the tools, productization
had become a significant issue. In the meantime, the Rogue
Wave Tools.h++ library had emerged as an industry leader.
After a quick evaluation we determined that the library was
far richer in functionality, designed much better, and was fully
documented. Since it was a mass marketed toolkit, the
acquisition cost was almost insignificant. Just documenting
our existing toolkit would far exceed the acquisition cost. The
fact that the Rogue Wave tools are becoming a de facto
standard within the industry provides a base from which to
derive specialized classes which can be shared between
different development efforts.

SPE 28255 T. LITTLE, M. A. RAHI, C. SINCLAIR 5

One hidden cost that was considered when looking at the
Rogue Wave tools was the cost of migrating legacy
applications to the new tools. The current applications are
based on the old C++ toolkit classes which are not compatible
with the Rogue Wave classes. It was determined that this will
require minimal migration of the applications to take place
over time. The migration is minimal because the migration can
be done in stages through the use of the Rogue Wave
templates which allows our old applications to incorporate the
new tools without having to remove the old class hierarchy.
All new development can be based entirely on the Rogue
Wave tools.

The economic rational favoring the buying of base tools is
typically overwhelming. Mass marketability and
standardization of the base tools has driven acquisition and
total costs down to the point that it would be impossible to
cost effectively justify building such tools.

3D Graphics: Buy and Build if Necessary

Also in 1990 we began to identify our needs in the 3D
graphics area. We had previously developed a prototype 3D
application utilizing Silicon Graphics GL graphics library.
This prototype was being well received in the marketplace
although we were constantly being asked questions about
portability and hardcopy. Both of these areas were weaknesses
with the GL API. As a result we began to search the
marketplace for an alternative 3D graphics library.

Our specification for 3D applications required several
fundamental features:

• Fast interactive display.
• Software rendering to X-terminals.
• Scalable hardcopy to CGM and PostScript.
• Portability to common UNIX platforms.
• Interoperability with the X window system.
• Compatibility with the Motif user interface.
• Efficient memory utilization

We were unwilling to suffer a significant performance
degradation relative to our existing GL prototype. Ideally, we
wanted a clean, standard graphical interface which would stay
prominent within the marketplace.

The alternatives considered were GL, PHIGS, HOOPS or an
environment like AVS. Although GL provided the fast
interactive display and was compatible with the X window
system, it had limited portability and had no hardcopy or
software X terminal support.

A commercial PHIGS implementation marketed by Liant
called Figaro was first looked at. The retained mode nature of
PHIGS did not appear to be well suited for our dynamic
applications. Furthermore, it was not well integrated with the

X window system and Motif and at the time Figaro had no
true 3D hardcopy support.

HOOPS from Ithaca Software was a retained mode library
similar to PHIGS that was the next tool evaluated. The major
differentiation between HOOPS and Figaro was that HOOPS
supported hardcopy to PostScript and CGM. It also had
software rendering to an X terminal and was compatible with
the X window system and Motif. Again, however, the retained
mode nature of HOOPS severely limited the interactive
performance and greatly increased the memory utilization
requirements.

Environments like AVS, Info Explorer and Advanced Data
Explorer were also considered. Although they were good
prototyping tools, none of them supported scalable hardcopy
and all of them used excessive amounts of resources.

None of the alternatives met our requirements. This forced us
to do one of two things: reconsider our requirements or
consider building. Although we were willing to reconsider our
requirements, none of the products met even a minimal subset
of our requirements. On the other hand, creating a fast,
portable, clean interface which could render to high speed
interactive displays and produce scalable hardcopy is a large
undertaking. The development would require continual
investment of resources due to the evolving nature of the
graphical industry. Timing also presented a critical problem.
By the time the graphical layer would have been developed
there was a real danger that the window of market opportunity
for the graphical applications would be lost. Alternatively, co-
developing the tools and applications would have also
introduced stability problems for the developers. As the
graphical layer was updated the applications would need to be
continually reworked to reflect changes in the tools.
Development of the applications would be adversely impacted
when key components of the graphical layer did not exist or
were only in a protoype stage. Costs overruns and delays were
a serious risk in this scenario making it difficult to manage the
costs and deliver the applications to the market.

With no single solution available it was decided to approach
the problem differently. Instead of looking for a single
solution we decided to break the graphical interface into three
separate layers, low level drivers, a middle level graphical
interface and high level graphical applications. Since it was
not feasible to create the low level graphical drivers GL was
selected for interactive display and HOOPS was selected for
hardcopy. By combining the strengths of the two low level
graphical libraries the functionality required for our 3D
graphical applications could be realized. The applications
would be shielded from the differences by the middle level
interface. An objected oriented approach12 was used to build
this layer as depicted in Figure 6. Objects provided a

6 BUY DON’T BUILD: WHAT DOES THAT MEAN FOR A DEVELOPER SPE 28255

convenient way to create an implementation that could handle
immediate mode graphics (i.e. GL) and a display list system
(i.e. HOOPS) transparently. Instead of building a complete
graphical system only an interface was built. This hybrid
approach of buying and building minimized the costs
associated with building while providing a flexible system to
work around the hidden inflexibility costs associated with the
off-the-shelf software.

XY Plotting Tools: Analyze, then Buy

In 1993 we began to formulate our requirements for an XY
plotting tool in order to develop a successor to a legacy
reservoir simulation plotting application13. Market trends
dictated that the XY plotting tool had to be very tightly
coupled with the X window system and with Motif. Again,
both PostScript and CGM hardcopy would need to be
supported. Additionally, customer comments about the legacy
plotting application indicated that the tool should be able to
support multiple vertical axes. Since we now had a successful
3D application, it was also important that the plotting package
integrate with it.

A logical starting point for our evaluation was to consider
building the plotting toolkit on top of the existing 3D tools
library. In fact, a functional prototype application was built
using the 3D tools. This prototype lacked the polished look
that we desired and we estimated that at least 6 months would
be required to develop a minimal plotting tool. Our estimate

was for just a minimal tool and did not include to effort to
make it general or to productize it. There was enough
incentive for us to search the market to investigate purchasing
a plotting tool.

XRT/Graph was a mature product that was in wide industry
use. It offered some useful convenience features such as an
automatic legend, a built in time axis, and a single X resource
setting to display the same plot as an area graph, XY plot, bar
chart, pie chart, etc. However, our analysis of the features
suggested that this was a product whose target market was
primarily business applications and as such it was deemed less
suitable for our purposes. For example, the time axis was
restricted to dates between 1970 and 2038 which is not a
reasonable constraint when dealing with reservoir production
data. Also, the XRT/Graph product was limited to two vertical
axes, one on either side, and it did not provide CGM output
capabilities. The downside of XRT/Graph's maturity and wide
customer base was that no influence could be exerted towards
the enhancement of the product. In fact, a good example of the
80/20 principle was exhibited when we inquired into the
possibility of adding multiple Y axes and CGM to the tool. It
turned out that the cost to add these features would be about 5
times the cost to acquire the base software.

In comparison to XRT/Graph, the PlotXY widget by INT was
a younger, less developed product. It was primarily targeted to

SPE 28255 T. LITTLE, M. A. RAHI, C. SINCLAIR 7

the needs of the petroleum computer industry. Not being
already entrenched in the marketplace with this product, INT
was willing during initial testing and evaluation to incorporate
some of our suggestions, such as rotating label and annotation
on vertical axes, and automatic legend generation. In addition,
PlotXY provided multiple axes, and CGM and PostScript.

Upon completing the technical evaluation, we continued with
the economic analysis. Figure 7 compares the timelines of
buying versus building. We had a fixed set of resources for
the project so the total effort was essentially constant. In the
case of buying, there would be start-up time associated with
training and familiarization with the tool. However, once the
tool was basically understood, the development of the
application could proceed. This significantly shortened the
time-to-market. The alternative required the design and
development of a toolkit before the application development
could get underway. Furthermore, continued maintenance of
the toolkit would rob valuable developer time from the
application development task.

From a cost standpoint, the acquisition cost was far less than
the expected burdened development costs for the toolkit.
Figure 8 compares the total costs of the application
development for the two alternatives up through the first
customer shipment. As is clear, the option to buy the toolkit
was predicted to bring a product to market much quicker and
at a lower total cost. Furthermore, the risks associated with the
development estimation and probability of future ongoing
maintenance costs greatly favored the decision to buy.

The decision of which tool to buy was governed largely by the
technical evaluation and the degree to which we felt our future
needs could be best met. From a direct cost perspective, both
products were comparable, although the additional costs for
enhancements to XRT/Graph made it more expensive. The
maturity and reliability of XRT/Graph was a significant
advantage, as we anticipated costs due to bugs in the immature
INT product. In our case, however, this immaturity meant that
we had more input into the direction of the product and thus

had access to a more flexible tool. It was this flexibility and
our concern for the integration with our 3D application that
guided us towards INT. Integration costs would have been
less had we chosen to build, however, the good vendor
relationship that we had formed with INT allowed us to
conclude that they could provide the flexibility that would
meet our future integration needs. Even with the incurred
costs from bugs and integration, there was a significant
projected overall cost savings compared to the alternative of
building a toolkit.

Conclusion

As a general slogan, “Buy don’t Build” is very useful to
remind us that building software is often much more
expensive than buying off-the-shelf software. This can be true
for both complete software applications as well as for
software components. Beyond the slogan, the real decision to
buy or build is an economic decision. Our experiences with
evaluating software components have shown that while there
are many times where buying software is the best choice, there
are other times where it is appropriate to build the software
and others where it makes sense to both buy and build.

The major driving forces in the buy versus build economics
come from increasingly complex and expensive software
development tasks. For many reasons, software expenses have
traditionally been underestimated. This underestimation will
probably continue, greatly increasing the risks associated with
software development. These high costs and risks give a great
incentive to consider alternatives such as buying off-the-shelf
software.

In addition to the direct costs of building or buying software,
it is also worthwhile to examine other hidden costs and
benefits. One major hidden cost of building software is the
opportunity loss due to the delay in time-to-market. Other
hidden costs can result from specialization in non-core
business areas. On the buy side, hidden costs to consider are
associated with software reliability, interoperability,
portability, and resource utilization. Often, there are potential
hidden benefits of buying into the vendor’s better expertise
and specialization. This knowledge base can translate into a
better design and implementation of the software component
and can thus lead to a more generic and functional tool,
encouraging reuse in other future products. Another key
benefit to buying comes from the vendor’s productization and
documentation. These benefits alone can make buying
beneficial in the short term, even if building is the long term
solution.

Our direct experiences, showed that the economic rational
favoring buying base class tools was overwhelming. This was
a case where the benefits of the buy option were significant

8 BUY DON’T BUILD: WHAT DOES THAT MEAN FOR A DEVELOPER SPE 28255

and the documentation by itself supported the acquisition cost.
For 3D graphics tools, no off-the-shelf package was
considered acceptable. However, a combination of two tools
was a viable alternative and we thus chose a hybrid “buy and
build” alternative. This approach minimized the costs
associated with building while providing the flexibility
required to meet our needs. With regard to XY plotting tools,
it would have been easy for the “not-invented-here” syndrome
to set in and for us to have begun developing our own plotting
tools. In this case “Buy don’t Build” encouraged us to analyze
the situation to determine the best alternative. Our prediction
showed both that the direct development cost of building
would exceed that of buying, and that there would be a
significant hidden cost generated by the delay to market. The
benefits of a generic, productized tool would also encourage
future reuse and probable cost savings.

While our perspective is that of a software vendor, our
experiences should be applicable to internal software
developers as well. Differences in needs will result in slightly
differing costs, but overall the software life cycle is very
similar whether the point of view is from a vendor or from an
internal developer.

Although we have focused our attention on the buy versus
build question for software components, much of this process
should be applicable to buy versus build comparisons for
complete applications. The overall conclusion in today’s
environment is that building software can be expensive.
Sometimes building is necessary in order to obtain a product
which meets core requirements. If an off-the-shelf package
can meet most of the requirements, then it will generally be
significantly more cost effective.

References

1. DeMarco, T., “1978-1980 Project Survey, Final Report,” New
York, NY, Yourdon Inc., 1981.

2. DeMarco, T., Controlling Software Projects. Yourdon Press, Inc.,
New York, NY, 1982.

3. Zelkowitz, M. V., “Perspectives on Software Engineering,” ACM
Computing Surveys, June 1978.

4. Frank, W. L., Critical Issues in Software, John Wiley & Sons, Inc.,
New York, NY, 1983.

5. Brooks, F. P. Jr., The Mythical Man-Month, Addison-Wesley
Publishing Company, Inc., Reading, MA, 1975.

6. Putnam, L. H. and W. Myers, Measures for Excellence, Yourdon
Press Inc., Englewood Cliffs, NJ, 1992.

7. Stubberud, A. R, “A Hard Look at Software,” IEEE Control
Systems Magazine, Feb. 1985.

8. Stephenson, P. E. and S. Bette, “Open Architecture Computing
Environment and Its Applications in Reservoir
Simulation,” Paper SPE 24285, presented at the 1992
European Petroleum Computer Conference, Stavanger,
Norway, May 24-27.

9. Boehm, B., Software Engineering Economics, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1981.

10. Nanus, B., and L. Farr, “Some Cost Contributors to Large-scale
Programs,” AFIPS Proc. SJCC, Volume 25 (Spring, 1964).

11. Weinwurm, G. F., “Research in the Management of Computer
Programming,” Report SP-2059, System Development
Corp., Santa Monica, 1965.

12. Sinclair, C., T. Little, and M. A. Rahi, “An Object Oriented
Solution to an Interdisciplinary 3D Visualization Tool,”,
Paper SPE 27545 presented at the 1994 European
Petroleum Computer Conference, Aberdeen, UK, March
15-17.

13. Little, T., D. Chien, R. Corbell, M. A. Rahi, and C. Sinclair,
“Migrating Legacy Petroleum Engineering Applications to
Open Systems Environments,”, Paper SPE 27560 presented
at the 1994 European Petroleum Computer Conference,
Aberdeen, UK, March 15-17.

